# GOES-R Series Ground Segment (GS) Project Functional and Performance Specification (F&PS) Version 1.10 May 8, 2009 U.S. Department of Commerce (DOC) National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) # **GOES-R Series Ground Segment Project Functional and Performance Specification** | Prepared by: | | |-----------------------------------------------------------------------------------|-------------| | Original Signed | 5/15/08 | | John Bristow<br>GOES-R Ground Segment<br>Systems Engineering Deputy Lead | Date | | Original Signed | 5/15/08 | | Richard Ullman GOES-R Ground Segment Systems Engineering Deputy Lead Approved by: | Date | | | - 14 - 14 O | | Original Signed | 5/15/08 | | Barbara Pfarr<br>GOES-R Ground Segment<br>Systems Engineering Lead (Acting) | Date | | Original Signed | 5/15/08 | | Robin Pfister GOES-R Ground Segment | Date | | Deputy Project Manager | Date | | _ | 5/15/08 | Project Manager # **CHANGE RECORD** | DOCUMENT TITLE: GOES-R Series Ground Segment Project<br>Functional and Performance Specification | | | | | | |--------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | VERSION | DATE | PAGES AFFECTED | DESCRIPTION | | | | 1.0 | 13 May 08 | All | Final | | | | 1.1 | 20 May 08 | Appendices A&D | Revision (CCR-01245) | | | | 1.2 | 10 Jul 08 | Appendix A, Table 2 | Revision (CCR-01263) | | | | 1.3 | 27 Aug 08 | Appendices A-D | Revision (CCR-01276) | | | | 1.4 | 23 Sep 08 | pp.19, 23, 42, 50, 53, 66 | Revision (CCR-01282, CCR-01285, CCR-01286, CCR-01288) | | | | 1.5 | 29 Oct 08 | pp. 13, 14, 16, 66, 67,<br>81, 110 | Revision (CCR-01292, CCR-01305, CCR-01313) | | | | 1.6 | 21 Nov 08 | pp. 8, 10, 13, 57, 61, 62, 66, 67, 75, 93, 105 | Revision (CCR-01290, CCR-01326,<br>CCR-01328, CCR-01329, CCR-<br>01330) | | | | 1.7 | 15 Dec 08 | pp. 12, 13, 14, 41, 63, 67, 70, 71, 73, 79, 80, 101, 102, 104, 108, 109, 113 | Revision (CCR-01291, CCR-01304,<br>CCR-01333, CCR-01334, CCR-<br>01341, CCR-01352) | | | | 1.8 | 29 Jan 09 | pp. 9, 68, 81, 110 | Revision (CCR-01365, CCR-01366, CCR-01368) | | | | 1.9 | 25 Mar 09 | pp. 11, 13, 39, 41, 56, 59, 60, 62, 63, 64 | Revision (CCR-01392, CCR-01393,<br>CCR-01394, CCR-01395, CCR-<br>01396, CCR-01399, CCR-01409,<br>CCR-01410, CCR-01414, CCR-<br>01416, CCR-01428, CCR-01429,<br>CCR-01430) | | | | 1.10 | 8 May 09 | pp. 4,5,6,9,13,14,<br>39,40,42 | Revision (CCR-01455, CCR-01457) | | | | | | | | | | The document version number identifies whether the document is a working copy, final, revision, or update, defined as follows: - Working copy or Draft: a document not yet finalized or ready for distribution; sometimes called a draft. Use 0.1A, 0.1B, etc. for unpublished documents. - **Final:** the first definitive edition of the document. The final is always identified as Version 1.0. - **Revision:** an edition with minor changes from the previous edition, defined as changes affecting fewer than one-third of the pages in the document. The version numbers for revisions 1.1 through 1.9, 2.1 through 2.9, and so forth. After nine revisions, any other changes to the document are considered an update. A revision in draft, i.e. before being rebaselined, should be numbered as 1.1A, 1.1B, etc. - **Update:** an edition with major changes from the previous edition, defined as changes affecting more than one-third of the pages in the document. The version number for an update is always a whole number (Version 2.0, 3.0, 4.0, and so forth). # TABLE OF CONTENTS | LIST ( | OF FIGURES | VII | |--------|-------------------------------------------------------------|------| | LIST ( | OF TABLES | VIII | | TBX L | JST | 0 | | 1 IN | TRODUCTION | 1 | | 1.1 | BACKGROUND | 1 | | 1.2 | Scope | | | 1.3 | GOES-R MISSION OBJECTIVES | | | 1.4 | SPECIFICATION DERIVATION | | | 1.5 | TRACEABILITY | | | 2 D( | OCUMENTATION | | | 2.1 | Order of Precedence | | | 2.2 | DECLARATION OF REQUIREMENTS | | | | OES-R GROUND SEGMENT DESCRIPTION | | | | | | | 3.1 | GOES-R GROUND SEGMENT OVERVIEW | | | 3.2 | GOES-R GROUND SEGMENT REQUIREMENTS FUNCTIONAL DECOMPOSITION | | | 3.3 | GOES R GROUND SEGMENT ROLE | | | 3.4 | GOES-R GROUND SEGMENT EXTERNAL INTERFACES | | | 3.5 | GOVERNMENT-FURNISHED PROPERTY | | | | 5.1 Facilities | | | | 5.3 Communications | | | | 5.4 Product Distribution | | | | 5.5 Scientific Algorithms | | | | | | | 4 GI | ROUND SEGMENT WIDE REQUIREMENTS | 8 | | 4.1 | Overview | 8 | | 4.2 | PHYSICAL DEPLOYMENT AND REMOTE OPERABILITY | 8 | | 4. | 2.1 Primary Facilities | 8 | | 4. | 2.2 Remote Backup Facility | 8 | | 4.3 | GROUND SEGMENT MAINTAINABILITY | 9 | | 4.4 | GROUND SEGMENT AVAILABILITY | 10 | | 4.5 | LATENCY AND REFRESH | 12 | | 4.6 | VERIFICATION AND VALIDATION | 13 | | 4.7 | SEGMENT-WIDE REQUIREMENTS | 13 | | 4. | 7.1 Security | 13 | | | 7.2 Telecommunications | 14 | | | 7.3 Accessibility | | | | 7.4 Electromagnetic Interference | | | | 7.5 Operational Integrity | | | | 7.6 Time References | | | | 7.7 Data Processing Error Rate | | | | 7.8 Extensibility, Modularity, and Scalability | | | | 7.9 Configuration Management System | | | 4.8 | DEVELOPMENT ENVIRONMENT | | | | 8.1 Calibration/Validation / WCDAS Product Maintenance | | | | 8.2 Level 2+ Algorithm Maintenance | | | 4.9 | INTEGRATION AND TEST ENVIRONMENT | | | 4.10 | OPERATOR HUMAN-MACHINE INTERFACE | 21 | | 5 | 5 ENTERPRISE MANAGEMENT REQUIREM | ENTS22 | |---|-------------------------------------------|------------------------------------------------------------| | | 5.1 Overview | | | | 5.2 GENERAL ENTERPRISE MANAGEMENT | | | | 5.2.1 Enterprise Management Data Manageme | nt23 | | | 5.2.2 Enterprise Management Performance | | | | | 23 | | | 5.4 COMMON SUPPORT SERVICES | 25 | | | | | | | | | | | 5.5.2 Ground Segment Security Monitoring | | | 6 | 6 MISSION MANAGEMENT REQUIREMENTS | S26 | | | 6.1 Overview | 26 | | | 6.2 OPERATIONAL VIEW | 26 | | | 6.3 GENERAL MISSION MANAGEMENT | | | | 6.4 SATELLITE ENGINEERING TELEMETRY MONI | TORING28 | | | | 28 | | | 6.6 REMOTE ACCESS TO MISSION MANAGEMENT | DATA29 | | | 6.7 Anomaly Response | | | | 6.8 Ground Directives | 30 | | | | 30 | | | | 31 | | | | 31 | | | | 31 | | | | | | | | toring and Performance32 | | | | 33 | | | | 33 | | | | 35 | | | · · | | | | | 36 | | | | | | | | | | | | | | | | 10NS | | | | | | | | on Network / Low Rate Information Transmission Interface40 | | | | | | | · _ · | 41 | | | | 41 | | | | | | | | | | | 1 . | 42 | | | | | | | | 43 | | | 6.24.1 Ranging Services | 44 | | | | ance44 | | | * | 44 | | | 6.26 Orbit Determination | 45 | | | 6.27 Level 0 Processing | 45 | | | 6.28 MISSION MANAGEMENT STORAGE | 46 | | | 6.28.1 Raw Data Recorder | 46 | | | 6.29 CALIBRATION SCHEDULING | $\Delta S$ | | Effective Date: Date of Last Signature | G417-R-FPS-0089 | |-------------------------------------------|-----------------| | Responsible Organization: GOES-R/Code 417 | Version 1.10 | | 7 | PRO | DUCT GENERATION REQUIREMENTS | 48 | |---|-------|-----------------------------------------------------------------------------------|-----| | | 7.1 | Overview | 48 | | | 7.2 | OPERATIONAL VIEW | | | | 7.3 | PRODUCT GENERATION | 49 | | | 7.4 | METADATA GENERATION | 53 | | | 7.5 | PRODUCT GENERATION SUPERVISION | 54 | | | 7.6 | GENERATE LEVEL 1 PRODUCTS | | | | 7.7 | INSTRUMENT RADIOMETRIC (INCLUDING PHOTOMETRIC) AND ENERGETIC PARTICLE CALIBRATION | | | | 7.8 | GENERATE LEVEL 2+ PRODUCTS | 57 | | | 7.9 | PRODUCT GENERATION STORAGE | | | | 7.10 | GOES REBROADCAST SIMULATOR | | | | 7.11 | OPERATIONAL INSTRUMENT CALIBRATION DATA METRICS MONITORING | 59 | | 8 | PRO | DUCT DISTRIBUTION REQUIREMENTS | 59 | | | 8.1 | Overview | | | | 8.2 | PRODUCT AND DATA DISSEMINATION | | | | 8.3 | AUTHORIZED USER SERVICES | 61 | | | 8.4 | DATA PRODUCT DELIVERY | | | | 8.5 | PRODUCT DISTRIBUTION STORAGE | 64 | | A | PPENI | DIX A: END PRODUCT PERFORMANCE PARAMETER TABLES | 66 | | A | PPENI | DIX B: OSD-ALLOCATED GROUND LATENCY FOR GOES-R ACCESS SUBSYSTEM | 92 | | A | PPENI | DIX C: OSD ALLOCATED GROUND LATENCY FOR ANTENNAS | 96 | | | | DIX D: IMPROVED LATENCIES AND REFRESH RATES FOR PRODUCT SETS 1 AND 2<br>N 1) | 100 | | A | PPENI | DIX E: AWIPS SECTORIZED PRODUCT SET CHARACTERISTICS | 111 | Effective Date: Date of Last Signature G417-R-FPS-0089 Responsible Organization: GOES-R/Code 417 Version 1.10 # LIST OF FIGURES | FIGURE 1: GOES-R SYSTEM OVERVIEW | 3 | |-------------------------------------------------|----| | FIGURE 2: ALLOCATION OF MISSION PRODUCT LATENCY | 68 | Effective Date: Date of Last Signature G417-R-FPS-0089 Responsible Organization: GOES-R/Code 417 Version 1.10 # LIST OF TABLES | APPENDIX A TABLE 1: BASELINE END-PRODUCT SETS AND PERFORMANCE PARAMETERS | 69 | |--------------------------------------------------------------------------|----| | APPENDIX A TABLE 2: PRODUCT QUALIFIERS | 82 | | APPENDIX A TABLE 3: OPTION 2 END-PRODUCT SETS AND PERFORMANCE PARAMETERS | | # **TBX LIST** | DOORS<br>ID/ Page | Section | Summary | OPR | |-------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | p. 4 | 3.1 | The third site is a geographically diverse remote backup facility (RBU), located at Fairmont, WV (TBR). | | | GSFPS-<br>2719 | 4.2 | The GOES-R GS functionality will be installed and operated at three sites. The NOAA Satellite Operations Facility (NSOF) in Suitland, MD and the Wallops Command and Data Acquisition Station (WCDAS) at Wallops, VA, are facilities that host current GOES systems. Together they will serve as the GOES-R primary facilities for operations. The third site will be a geographically-diverse Remote Backup Facility (RBU), located at Fairmont, WV (TBR), which will host a subset of the GS functionality and enable continuity of operations. | | | GSFPS-<br>1174 | 4.2.2 | The GS RBU functionality <b>shall</b> be deployed at Fairmont, WV (TBR). | | | GSFPS-<br>2344 | 8.2 | The GS <b>shall</b> acknowledge receipt of data requests within ten seconds (10 seconds) (TBR). | | | GSFPS-<br>2382 | 8.3 | The GS <b>shall</b> accommodate concurrent transfers of product files to 100 (TBR) ad hoc users through the GOES-R Access Point. | | | GSFPS-<br>2916 | 8.3 | The GS <b>shall</b> begin transfer of any requested and available product from the GOES-R Access Point to the requester within five (5) seconds (TBR) of ad hoc request validation. | | | GSFPS-<br>2428 | 8.4 | The GS <b>shall</b> process a minimum of 200 (TBR) simultaneous subscription service data transfers. | | | GSFPS-<br>3137 | 8.4 | The GS <b>shall</b> be capable of transferring data from the GOES-R Access Point to users at a minimum combined rate of 500 Mbps (TBR). | | | GSFPS-<br>3153 | 8.4 | The GS <b>shall</b> transfer data from the GOES-R Access Point to users at a minimum combined rate of 500 Mbps (TBR). | | ## 1 INTRODUCTION ## 1.1 Background The next generation Geostationary Operational Environmental Satellites (GOES), designated the GOES-R Series, are required to provide continuity and improvement of remotely-sensed environmental data from a geosynchronous orbit in the 2014-2028 era. The GOES-R Program, which has the responsibility to acquire and implement the GOES-R mission, is being implemented through the GOES-R Ground Segment Project (GSP) and the GOES-R Flight Project. The GSP will acquire the integrated, distributed GS that will conduct satellite operations and instrument product generation and distribution. Details about the GOES-R conceptual architecture, functionality, and operations are documented in the reference GOES-R Program Concept of Operations (P417-R-CONOPS-0008). # 1.2 Scope This document, together with all GOES-R GS Interface Requirements Documents (IRDs) (see Ground Segment Applicable and Reference Documents List (G 417-R-LIST-0165)) and the Ground Segment Mission Assurance Requirements document (G 417-R-GSMAR-0068), specify the functional and performance requirements with which the GS **shall** comply. Sections 4 through 8 of this specification contain the high level functional and performance requirements for the GS portion of the GOES-R Series System. The column headings of these sections indicate the GSP DOORS ID Number, the contract option number, and the developing organization responsible for each requirement, and the requirements. The requirements in Sections 4 through 8 of this document are allocated to developing organizations that are providing the functionality described by each requirement. The development effort column next to each requirement denotes antennas (ANT), GOES-R Access Subsystem (GAS), OSO, the Algorithm Working Group (AWG), the GS Contractor (GS Ktr), or ALL to allocate the requirement to one of the major development efforts. OSO and AWG requirements are explicitly identified; all organizations (ALL) indicates that the requirement applies to GS Ktr, ANT, and GAS. (CCR01430) The Option column next to each requirement denotes Base, 0001, or 0002 to allocate the requirement to the baseline contract, or to one of the 2 options. #### 1.3 GOES-R Mission Objectives - To maintain GOES mission continuity and quality in environmental observations in the 2014-2028 timeframe - b) To provide enhanced environmental data products - c) To improve services and data being provided to Users - d) To be responsive to technology infusion to meet evolving User needs ### 1.4 Specification Derivation The GOES-R Series Level I Requirements Document (LIRD) (P 417-R-LIRD-0137) levies NESDIS requirements on the GOES-R Program. The Mission Requirements Document (MRD) (P417-R-MRD-0070) captures the program - level system requirements and allocates a subset of those to the Ground Segment Project. The Ground Segment Functional and Performance Specification (GS-F&PS) (417-R-FPS-0089), and other requirements documents (e.g., IRDs) define derived GS level requirements. Parallel documents, the GOES-R Spacecraft Functional and Performance Specification (S-F&PS) (P 417-R-PSPEC-0014), and its associated IRDs exist for the Space Segment. # 1.5 Traceability This document is configuration controlled within the GOES-R GSP DOORS database. Requirements traceability is maintained within that database. #### 2 DOCUMENTATION ## 2.1 Order of Precedence Any inconsistency in this solicitation or contract shall be resolved in accordance with Contract Clause 52.215-8 Order of Precedence. Any inconsistency in other documents, exhibits, and attachments **shall** be resolved by giving precedence in the following order: - a) The Statement of Work - b) The Functional and Performance Specification - c) The Interface Requirements Documents - d) Other exhibits and attachments included in Section J - e) The Applicable Documents - f) The Reference Documents Terminology applicable to this GS-F&PS is documented in the GOES-R Series Acronym and Glossary Document (P417-R-LIST-0142). In the event of conflict between terminology in this handbook and any other dictionary, the GOES-R terminology **shall** take precedence. The full lists of applicable and reference documents, with associated document number and date of issue for each, are maintained in the Ground Segment Applicable and Reference Documents List (G 417-R-LIST-0165). Applicable documents are Government prepared and controlled documents and industry standards documents. Reference documents amplify or clarify the information presented in this document. In the event of any unresolved conflict, the Contractor **shall** request conflict resolution by the Contracting Officer. ## 2.2 Declaration of Requirements The following requirements terminology is used throughout this document: - a) The term "shall" shall be interpreted to mean that the function, service, or capacity described is a mandatory requirement for the GS. - b) The terms "shall provide the capability," "shall have the capability," "shall be capable," "shall enable," "shall permit" and "shall allow," shall be interpreted to mean that the function, service or capacity described is a mandatory requirement for the GS, but that the capability, service or capacity may not necessarily be exercised continuously (e.g., event driven, operator selected, operator initiated). - c) The term "should" designates a desired level of performance the Government would like to achieve. - d) All other declarative statements, including use of the term "will", only designate statements of fact or intentions of the Government and are not to be interpreted as contractor requirements. - e) The term "(TBS)" means, "to be supplied", identifies missing or incomplete information, values, or data needed to fulfill a requirement. - f) The term "(TBD)" means "to be determined", identifies a missing requirement. - g) The term "(TBR)", means "to be refined/reviewed", means that the requirement is subject to review for appropriateness and subject to revision. G417-R-FPS-0089 Version 1.10 h) Requirements that contain the word "satellite" (singular) should be interpreted to apply for all GOES-R series satellites operated in the multi-satellite environment, unless stated otherwise, consistent with GS overall requirement for concurrent multiple satellite operations. Refer to the Statement of Work for Government and contractor responsibilities associated with TBSs, TBDs, and TBRs. ## 3 GOES-R GROUND SEGMENT DESCRIPTION # 3.1 GOES-R Ground Segment Overview Section 3 describes the GOES-R GS in terms of the high-level physical architecture, notional functional architecture, and external interfaces. Figure 1: GOES-R Ground Segment Overview (CCR01457) The GOES-R Ground Segment will operate from three sites. The NOAA Satellite Operations Facility (NSOF) in Suitland, MD will house the primary Mission Management (MM), and selected Product Generation (PG), and Product Distribution (PD) functions. The Wallops Command and Data Acquisition Station (WCDAS), located in Wallops, VA, will provide the primary space communications services, EM and MM functions, and selected PG and PD functions. The third site is a geographically diverse remote backup facility (RBU), located at Fairmont, WV (TBR). It will function as a completely independent backup for the MM and selected PG and PD functions for the production of Key Performance Parameters (KPPs) and GOES Rebroadcast (GRB) data, and will be capable of concurrent and remote operations from the NSOF and the WCDAS. The RBU will have visibility to all operational and on-orbit spare satellites. The KPPs consist of: cloud and moisture imagery: CONUS, Full Disk, and Mesoscale, and sectorized products. The Enterprise Management (EM) function is integrated across all ground segment components and locations. The Ground Segment will include separate development and integration and test (I&T) environments for the purposes of ongoing development, improvement, and integration throughout the GOES-R mission. Portions of these environments will be located at both NSOF and WCDAS to support local site development, integration, and test activities. Responsible Organization: GOES-R/Code 417 The satellites will be commanded throughout their mission lifetime from the NOAA Satellite Operational Control Center (SOCC) located at NSOF with the ground station radio frequency (RF) interface located at the WCDAS, or the RBU. The engineering telemetry streams are received by the WCDAS and ground relayed to the SOCC for processing and monitoring. The raw sensor data is received by the WCDAS, G417-R-FPS-0089 processed, reformatted, and rebroadcast through the GRB transponder. The raw sensor data are received by the WCDAS, processed by the PG function at the WCDAS to create L1b and some L2+ products, and rebroadcast through the GRB transponder. The GRB data are then received at the NSOF where the PG function will create the rest of the L2+ products. The L1b and L2+ products are then either sent directly or made available to users. At the RBU the raw sensor data will be received through its RF interface and processed by the PG function at the RBU. The RBU will be limited to the production of data to support distribution via GRB and the production of KPPs. The GOES-R Series system will provide the following unique payload services (UPS): - a) HRIT/EMWIN: EMWIN is a service that includes watches, warnings, forecasts, graphics, and other hydro-meteorological products provided by the National Weather Service (NWS). The High Rate Information Transmission (HRIT) data stream is comprised of satellite imagery, DCS products, derived products from GOES and Polar programs, and weather analysis and forecast maps from the NWS. OSD creates and merges the data streams (one for each of GOES East and GOES West) and provides to the GOES-R GS as an Intermediate Frequency (IF) signal for uplink. (CCR01457) - b) DCS: The GOES DCS is a relay system used to collect information from earth-based platforms. These platforms transmit an electronic signal, containing the environmental data observed by the sensors on the platform, at predefined wavelengths and times. The transponder on board the GOES-R satellite will detect this signal, and then continuously rebroadcasts it so that it can be picked up by the ground equipment only located at the WCDAS. - c) SARSat: The GOES SARSat transponder will receive emergency beacon transmissions for relay to ground stations responsible for search efforts. - The GOES-R series will support the transmission of GOES-R data in the emulated GVAR (eGVAR) format to facilitate the GOES user transition from GOES-N to GOES-R. eGVAR contains GOES-R data products packaged in the legacy GOES-N GVAR format and is transmitted to the GOES-N Ground System for broadcast. The GOES-R GS will directly provide GOES-R data to the Advanced Weather Interactive Processing System (AWIPS). AWIPS is a computer workstation and communication network that serves as the nerve center of operations of all NWS Weather Forecast Offices (WFO) and NWS River Forecast Centers (RFC). Currently, the GOES-N system does not have its own interface to AWIPS. Instead, the Environmental Satellite Processing Center (ESPC) provides GOES data to the AWIPS. Unlike the GOES-N Ground System, the GOES-R GS will have the capabilities to interface with AWIPS. GOES-R will employ CLASS services to provide archive services for GOES-R data. CLASS provides the archive and access services for the collection, archiving and dissemination of environmental data collected by a variety of in situ and remote sensing observing systems. ### 3.2 GOES-R Ground Segment Requirements Functional Decomposition The GOES-R GS requirements fall into four primary functional categories: MM, PG, PD and EM. These categories have been defined as a basis for grouping functional attributes of the GS, and are not intended to imply an implementation of the GS. Necessary interface and support functions are included within the GS. The GS encompasses more than hardware and software systems, it includes the processes, services and personnel required to accomplish a set of functional tasks. ### 3.3 GOES-R Ground Segment Role The details and descriptions of each of the elements of the GOES-R GS (MM, PG, PD, and EM) are provided in the GOES-R GS Concept of Operations. #### 3.4 GOES-R Ground Segment External Interfaces The GOES-R Ground Segment is expected to interface to the following entities: - a) GOES-R Space Segment - b) GOES-R Launch Segment - c) Unique Payload Services (HRIT/EMWIN, DCS) (CCR01457) - d) Ancillary Data Relay System (ADRS) (OSD) - e) Office of Satellite Development (OSD) Comprehensive Large Array-data Stewardship System (CLASS) (OSD) - f) Advanced Weather Interactive Processing System (AWIPS) (NWS) - g) GOES-N/O/P Ground System for eGVAR ## 3.5 Government-Furnished Property The Government will provide resources as defined in the GOES-R Government Furnished Property List. #### 3.5.1 Facilities The GS facilities, including power, environmental controls, and floor space, will be provided by the Government. #### 3.5.2 Antennas The GS antenna subsystem(s), including the RF equipment to the IF switch, will be provided as GFP to the GS Contractor. OSD will procure, install, and accept this equipment for the Government. Once OSD has accepted this equipment it will be turned over to the GS Contractor to integrate into the GOES-R GS. #### 3.5.3 Communications Communications required for the GOES-R GS will be purchased/leased by OSO. The interface to the communications circuits at a distribution frame will be located at the communications service provider's demarcation point. Interface descriptions, circuit types, and supported data rates for connections to the circuits terminated at the distribution frame will be provided by the GS contractor to the Government. All CSU/DSUs, multiplexers, modems, and other related communications equipment on the service provider side of the demarcation point will be provided by OSO. #### 3.5.4 Product Distribution The GFP portion of the PD function provides distribution of L0, L1b, L2+, and associated mission data produced by PG. The PD function will: - a) Send data and products from PG to the GOES-R Access Subsystem - b) Make available data and products through the GOES-R Access Point for authorized users. - c) Store 7 days of data and products after product generation for retransmission. - d) Send selected data, products, ancillary data, algorithms, and associated metadata to CLASS - e) Transfer the GRB data stream from PG to MM - f) Transfer the eGVAR data stream from PG to the GOES-N interface The GOES-R Access Subsystem is comprised of the GOES-R Access Point and the 7-day temporary storage of the GOES-R core product set. The GOES-R Access Point is developed by OSD and is the operational user interface for ad-hoc data queries and for establishing or modifying data subscriptions or standing orders for machine to machine delivery of data via "push" or "pull" distribution. All real-time and near real-time users accessing data via the GOES-R Access Point draw their data from the temporary (7 days or less) data store. The 7-day revolving temporary storage serves as the short-term access for fulfillment of ad hoc user requests for recent historical data via the GOES-R Access Point. For the services described in this paragraph, OSDPD has an interest in moving to an enterprise-wide solution for all NOAA missions. As such they will lead the development of this part of the PD element. The ESPC will receive data via the GOES-R Access Point for further tailoring as requested by ESPC users. Effective Date: Date of Last Signature G417-R-FPS-0089 Responsible Organization: GOES-R/Code 417 Version 1.10 # 3.5.5 Scientific Algorithms The process for developing scientific algorithms to produce individual L1b and L2+ products (Atmosphere, Land, Ocean, and Space Weather) will require the participation of multiple organizations (instrument vendors, Flight Project, AWG, GS contractor, and the GSP). After Government review, the Government will provide individual Algorithm Packages, containing the algorithm design documents, test data, and other information, to the GS contractor as GFP. | ID | Dev. Effort | Option | Requirement | |----------------|-------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GSFPS- | | | 4 GROUND SEGMENT WIDE REQUIREMENTS | | 1150 | | | | | GSFPS-<br>2430 | | | 4.1 Overview | | GSFPS- | | | Section 4 specifies segment-wide operational, functional, and performance | | 1152 | | | requirements, which are allocated to the GOES-R GS as an end-to-end system. Segment-wide requirements for facilities, security, reliability, maintainability, and availability (RMA), design and construction, verification | | | | | and validation, and external interfaces are also included in this section. | | GSFPS-<br>1154 | | | 4.2 Physical Deployment and Remote Operability | | GSFPS-<br>2719 | | | The GOES-R GS functionality will be installed and operated at three sites. The NOAA Satellite Operations Facility (NSOF) in Suitland, MD and the Wallops Command and Data Acquisition Station (WCDAS) at Wallops, VA, are facilities that host current GOES systems. Together they will serve as the GOES-R primary facilities for operations. The third site will be a geographically-diverse Remote Backup Facility (RBU), located at Fairmont, WV (TBR), which will host a subset of the GS functionality and enable continuity of operations. | | GSFPS-<br>1158 | | | 4.2.1 Primary Facilities | | GSFPS-<br>1160 | All | Base | GS functionalities described in this GS F&PS, with exception of the RBU and connecting networks <b>shall</b> be deployed at the WCDAS and NSOF facilities ("the GS primary facilities"). | | GSFPS-<br>3146 | All | Base | The GS at NSOF <b>shall</b> include the primary Mission Management (MM), Enterprise Management (EM), and selected Product Generation (PG) and Product Distribution (PD) functions. | | GSFPS-<br>3147 | GS Ktr, ANT (CCR-01430) | Base | The GS at WCDAS <b>shall</b> include the primary space communications services, EM and MM functions, and selected PG and PD functions. | | GSFPS-<br>1162 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> include all functionalities necessary for the production, RF uplink, and reception of GRB at the WCDAS facility. | | GSFPS-<br>1164 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> include all functionalities necessary for the reception of GRB at the NSOF facility. | | GSFPS-<br>1166 | All (CCR-<br>01290) | Base | The GS functionality resident at NSOF <b>shall</b> be operable from NSOF. | | GSFPS-<br>2946 | GS Ktr, ANT,<br>OSO (CCR-<br>01430) | Base | The GS functionality resident at WCDAS <b>shall</b> be operable from WCDAS. | | GSFPS-<br>1170 | GS Ktr, ANT,<br>OSO (CCR-<br>01430) | Base | The GS <b>shall</b> provide the capability to operate all WCDAS-deployed functionalities remotely from the NSOF. | | GSFPS-<br>2604 | All | Base | The GS <b>shall</b> meet functional and performance specifications for two GOES-R satellites simultaneously except as noted in the element descriptions. | | GSFPS-<br>1172 | | | 4.2.2 Remote Backup Facility | | GSFPS-<br>1174 | GS Ktr, ANT,<br>OSO (CCR-<br>01430) | Base | The GS RBU functionality <b>shall</b> be deployed at Fairmont, WV (TBR). | | GSFPS- GS Ktr, ANT, OSO (CCR- 01430) | | onsible Organiz | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | SSPS- CCR | ID | Dev. Effort | Option | Requirement | | 2431 OSO (CCR- 01430) | 1176 | OSO (CCR-<br>01430) | | , , , | | SSPPS- GS Ktr, ANT, DSC (CCR- 01430) SSPPS- GS Ktr, ANT, DSC (CCR- 01430) SSPPS- GS Ktr, ANT DSC (CCR- 01430) SSPPS- GS Ktr, ANT DSC (CCR- 01430) SSPPS- SS Ktr, ANT DSC (CCR- 01430) SSPPS- SS Ktr, ANT, DSC (CCR- 01430) SSPPS- SS Ktr, ANT, DSC (CCR- 01430) SSPPS- SS Ktr, ANT, DSC (CCR- 01430) SSPPS- | | OSO (CCR-<br>01430) | Base | | | CSC CCR O1430 Base The GS RBU shall provide all PG functions necessary to produce KPPs identified in Appendix A. | | OSO (CCR- | Base | The GS RBU functionality <b>shall</b> be operable from the GS RBU. | | GSFPS- 1186 GS Ktr Base The GS RBU shall provide all PG functions necessary to produce KPPs identified in Appendix A. | I | OSO (CCR- | Base | | | Uplink, and reception of GRB at the RBU. | | | Base | | | to AWIPS as specified in the GOES-R Series Ground Segment (GS) to Advanced Weather Interactive Processing System (AWIPS) Interface Requirements Document (IRD) (P417-R-IRD-0160). (CCR01366) GSFPS-3103 GS Ktr, ANT, OSO (CCR-01430) The GS shall be capable of supporting the following single functions or combination of functions at the RBU: a) Space - Ground Communications b) Command Generation and Telemetry Data Processing c) Raw (instrument) Data Processing to Level 0 d) Mission Operations to include real-time console operations, offline engineering and trending, bus and instrument health and safety monitoring, anomaly detection and resolution and procedure development e) Signal Monitoring f) Mission Scheduling and Planning g) Orbit Determination and Maneuver Planning h) Image Navigation and Registration Monitoring i) Routine Instrument Calibration Support and Product Monitoring j) Production of Level 1b Products and GLM k) Generation of KPPs l) GRB Assembly and Rebroadcast m) Sectorized Product Distribution to AWIPS n) Archiving (e.g., telemetry, EM events) o) 5-day temporary revolving storage p) Distribution of data to CLASS q) HRIT/EMWIN uplink r) Enterprise Management (CCR-01457) GSFPS- 1192 GSFPS- 1192 GSFPS- 1192 GSFPS- 1204 All Base The GS design shall enable hardware and software maintenance of the GS while maintaining compliance with the functional and performance requirements of the GOES-R Series System. | I | | Base | | | or combination of functions at the RBU: a) Space - Ground Communications b) Command Generation and Telemetry Data Processing c) Raw (instrument) Data Processing to Level 0 d) Mission Operations to include real-time console operations, offline engineering and trending, bus and instrument health and safety monitoring, anomaly detection and resolution and procedure development e) Signal Monitoring f) Mission Scheduling and Planning g) Orbit Determination and Maneuver Planning h) Image Navigation and Registration Monitoring i) Routine Instrument Calibration Support and Product Monitoring j) Production of Level 1b Products and GLM k) Generation of KPPs l) GRB Assembly and Rebroadcast m) Sectorized Product Distribution to AWIPS n) Archiving (e.g., telemetry, EM events) o) 5-day temporary revolving storage p) Distribution of data to CLASS q) HRIT/EMWIN uplink r) Enterprise Management (CCR-01457) GSFPS- 1192 GSFPS- 1192 GSFPS- 1192 GSFPS- 1192 Base The GS design shall enable hardware and software maintenance of the GS while maintaining compliance with the functional and performance requirements of the GOES-R Series System. GSFPS- 1206 All Base The GS shall include diagnostic tools to support maintenance of all internal GS interfaces. | I | | Base | Advanced Weather Interactive Processing System (AWIPS) Interface | | GSFPS- 1204 Base The GS design <b>shall</b> enable hardware and software maintenance of the GS while maintaining compliance with the functional and performance requirements of the GOES-R Series System. GSFPS- 1206 Base The GS <b>shall</b> include diagnostic tools to support maintenance of all internal GS interfaces. | 3103 | OSO (CCR- | Base | or combination of functions at the RBU: a) Space - Ground Communications b) Command Generation and Telemetry Data Processing c) Raw (instrument) Data Processing to Level 0 d) Mission Operations to include real-time console operations, offline engineering and trending, bus and instrument health and safety monitoring, anomaly detection and resolution and procedure development e) Signal Monitoring f) Mission Scheduling and Planning g) Orbit Determination and Maneuver Planning h) Image Navigation and Registration Monitoring i) Routine Instrument Calibration Support and Product Monitoring j) Production of Level 1b Products and GLM k) Generation of KPPs l) GRB Assembly and Rebroadcast m) Sectorized Product Distribution to AWIPS n) Archiving (e.g., telemetry, EM events) o) 5-day temporary revolving storage p) Distribution of data to CLASS q) HRIT/EMWIN uplink | | GS while maintaining compliance with the functional and performance requirements of the GOES-R Series System. GSFPS- All Base The GS <b>shall</b> include diagnostic tools to support maintenance of all internal GS interfaces. | 1192 | | | | | 1206 internal GS interfaces. | I | AII | Base | GS while maintaining compliance with the functional and performance | | GSEPS- All Base The GS shall include diagnostic tools to support maintenance of all | I | All | Base | | | 1208 external GS interfaces. | GSFPS-<br>1208 | All | Base | The GS <b>shall</b> include diagnostic tools to support maintenance of all external GS interfaces. | | | onsible Organiz | | | |----------------|------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2432 | All | Base | All elements of the GS <b>shall</b> make all locally collected performance and status measurements available to EM. | | GSFPS-<br>2433 | All | Base | All elements of the GS <b>shall</b> make all locally detected hardware and software anomaly reports available to EM. | | GSFPS-<br>2434 | All | Base | All elements of the GS <b>shall</b> make resource operational status and performance data available to EM, including; resource utilization (processing, storage, network and communications status), processing throughput, equipment configuration and availability, data accounting, data processing status, and product status, to support operations, trending, and performance analyses. | | GSFPS-<br>3001 | All<br>(CCR-01430) | Base | The GS <b>shall</b> have the capability to export any operator designated file to removable media (e.g., thumb drive, compact disk, tape, etc.). | | GSFPS-<br>3002 | All<br>(CCR-01430) | Base | The GS <b>shall</b> have the capability to store any operator designated file to removable media (e.g., thumb drive, compact disk, tape, etc.). | | GSFPS-<br>1374 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> permit an operator to install or upgrade software from any site within the GS. | | GSFPS-<br>3003 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> enable access and inspection of software at any site, from any other site. | | GSFPS-<br>3004 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> enable modification of software at any site from any other site. | | GSFPS-<br>3005 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> enable testing of software at any site from any other site. | | GSFPS-<br>3006 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> enable distribution of software at any site, from any other site. | | GSFPS-<br>3133 | All (CCR-<br>01290) | Base | The GS <b>shall</b> provide information and diagnostic tools, to include an online knowledge base, to isolate faults internal to the GS. | | GSFPS-<br>1210 | | | 4.4 Ground Segment Availability | | GSFPS-<br>1212 | | | Operational availability is the fraction of time that the GOES-R Ground Segment (or a specified functionality contained within) is fully functional over a discrete 30-day period. This includes the GOES-R facilities, antennas, and networks out to the extent of the demarcations as defined in the IRDs. Maximum time to restore service (MaxTTRS) requirements are considered to be met at the 99.9 percentile (e.g., if an outage occurs, there is a 0.999 probability that service will be restored within the specified interval). | | GSFPS-<br>1214 | All | Base | The GS <b>shall</b> operate continuously for the life of the GOES-R System. | | GSFPS-<br>1216 | All | Base | The GS <b>shall</b> have a minimum Operational Availability of 0.989 over the GOES-R System lifetime, except for functionality for which a higher Operational Availability has been specified. | | GSFPS-<br>2910 | All | Base | The GS <b>shall</b> have a MaxTTRS of 120 minutes for functions other than those for which a shorter MaxTTRS has been specified. | | GSFPS-<br>2606 | ANT (CCR-<br>01430) | | The GS <b>shall</b> have a minimum Operational Availability of 0.99988 for the set of antenna subsystem functions, averaged over a 30-day period. | | GSFPS-<br>2908 | ANT ( <i>CCR</i> -<br>01430) | | The GS <b>shall</b> have a MaxTTRS of 5 minutes for antenna functionality. | | | Responsible Organization: GOES-R/Code 417 Version 1.10 | | | | | |----------------|--------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | ID | Dev. Effort | Option | Requirement | | | | GSFPS-<br>1220 | GS Ktr | Base | The GS <b>shall</b> have a minimum Operational Availability of 0.99988 for mission management functionality, averaged over a 30-day period. | | | | GSFPS-<br>2907 | GS Ktr | Base | The GS <b>shall</b> have a MaxTTRS of 5 minutes for mission management functionality. | | | | GSFPS-<br>3007 | GS Ktr | Base | The GS <b>shall</b> have a minimum Operational Availability of 0.99988 for functionality associated with the generation and GRB distribution of products, averaged over a 30-day period. | | | | GSFPS-<br>3008 | GS Ktr | Base | The GS <b>shall</b> have a MaxTTRS of 5 minutes for functionality associated with the generation and GRB distribution of products. | | | | GSFPS-<br>1222 | GS Ktr | Base | The GS <b>shall</b> have a minimum Operational Availability of 0.99861 for functionality associated with the generation of sectorized cloud and moisture imagery products, averaged over a 30-day period. | | | | GSFPS-<br>1224 | GS Ktr, OSO<br>(CCR-01430) | Base | The GS <b>shall</b> have a minimum Operational Availability of 0.99861 for functionality associated with the delivery of sectorized cloud and moisture imagery products, as specified in the GS to AWIPS IRD, to the AWIPS demarcation point, averaged over a 30-day period. | | | | GSFPS-<br>2909 | GS Ktr, OSO<br>(CCR-01430) | Base | The GS <b>shall</b> have a MaxTTRS of 60 minutes for functionality associated with sectorized cloud and moisture imagery products data collection, processing, and distribution to the AWIPS demarcation point. | | | | GSFPS-<br>2827 | GS Ktr<br>(CCR-01430) | Base | The GS <b>shall</b> have a minimum availability of 0.99 for components associated with the generation of non KPP Level 2+ products, averaged over a 30 day period. | | | | GSFPS-<br>2905 | GS Ktr, GAS<br>(CCR-01430) | Base | The GS <b>shall</b> have a minimum Operational Availability of 0.99, averaged over a 30-day period, for those functions associated with the distribution of End Products to the GOES-R Access Point. | | | | GSFPS-<br>3009 | GS Ktr,<br>ANT, OSO<br>( <i>CCR-01430</i> ) | Base | The GS <b>shall</b> have no single point of failure at any site in mission management functionality. | | | | GSFPS-<br>2435 | All | Base | The GS <b>shall</b> have no single point of failure at any site in L0, L1b, GLM, GRB, and sectorized cloud and moisture imagery product generation and distribution functionality. | | | | GSFPS-<br>2913 | All | Base | The GS <b>shall</b> be designed such that a failure in any function of the system does not impact the ability of redundant, back-up, or contingency instances of the functionality to perform the function. <i>(CCR01409)</i> | | | | GSFPS-<br>2911 | GS Ktr,<br>ANT, OSO,<br>GAS (CCR-<br>01430) | Base | The GS <b>shall</b> isolate anomalies by function and by site. | | | | GSFPS-<br>1230 | GS Ktr | Base | The GS <b>shall</b> initiate transmission of failover configuration messages for a given function to a functionality's backup site upon detection of a loss of that functionality at the primary site. | | | | | onsible Organiz | | | |----------------|-----------------|--------|-------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> be capable of issuing directives for failover to the RBU | | 3104 | | | of any single function | | | | | or combination of functions including the following: | | | | | g. | | | | | a) Space - Ground Communications | | | | | | | | | | b) Command Generation and Telemetry Data Processing | | | | | c) Raw (instrument) Data Processing to Level 0 | | | | | d) Real-time Mission Operations console operations | | | | | e) Production of Level 1b Products and GLM Product | | | | | f) Generation of KPPs | | | | | g) GRB Assembly and Rebroadcast | | | | | h) Sectorized Product Distribution to AWIPS | | | | | i) Archiving (e.g., telemetry, EM events) | | | | | | | | | | j) 5-day temporary revolving storage | | GSFPS- | GS Ktr | Base | The GS shall complete failover to the RBU of any function supported by | | 3010 | 30 1 111 | 2430 | the RBU within 5 minutes of failover initiation unless failover sequence is | | 3010 | | | <u>'</u> | | | | | intentionally halted. | | GSFPS- | GS Ktr, | Base | The GS RBU <b>shall</b> be capable of transitioning to operational status within | | 2947 | ANT, OSO | | 5 minutes. | | 2341 | · · | | บ ที่เกิดเหลือ. | | 00550 | (CCR-01430) | _ | TI 00 ( 122 | | GSFPS- | GS Ktr, | Base | The GS facilities <b>shall</b> maintain synchronization with each other such that | | 3011 | ANT | | historical data is not required to transition to operational status. | | | (CCR-01430) | | | | GSFPS- | GS Ktr, | Base | The GS RBU <b>shall</b> transition to backup status for a given function once | | 3012 | ANT, OSO | | the primary responsibility for that function has returned to the primary | | 00.2 | (CCR-01430) | | facility or upon intentional termination of a failover sequence. | | | (00/(0/1400) | | lability of aport intertaction at termination of a failover sequence. | | GSFPS- | GS Ktr, | Base | The GS RBU <b>shall</b> retain primary responsibility for a function during | | 1232 | ANT, OSO | | handover back to the primary facility until successful handover has been | | | (CCR-01430) | | completed. | | | , | | · | | GSFPS- | GS Ktr, | Base | The GS RBU <b>shall</b> be capable of operating independently of functionalities | | 1180 | ANT, OSO | | deployed at WCDAS and NSOF during failover events, while still meeting | | | (CCR-01430) | | all applicable functional and performance requirements. | | | , | | | | GSFPS- | GS Ktr, | Base | The GS <b>shall</b> be able to failover functionality between sites on a function- | | 2603 | ANT, OSO | | by-function basis, while maintaining continuity of operations. | | | (CCR-01430) | | | | GSFPS- | | | 45 Interes and Defeat | | 1239 | | | 4.5 Latency and Refresh | | GSFPS- | | | GS product latency and refresh requirements as applied from ingest from | | | | | | | 1241 | | | the OSD antenna IF switch to ingest of the GOES-R Access Subsystem | | | | | and other external interfaces as defined in the appropriate IRDs, which | | | | | vary by product, are located in Appendix A of this GS F&PS. | | CCEDC | | | COES B Access Subayatam allocated Cround Latency requirements | | GSFPS- | | | GOES-R Access Subsystem-allocated Ground Latency requirements, | | 2437 | | | which vary by product, are located in Appendix B of this GS F&PS. | | | | | (CCR01291) | | GSFPS- | | 0001 | GS product latency and refresh requirements as applied from the OSD | | | | 0001 | GS product latency and refresh requirements as applied from the OSD | | 2948 | | | antenna IF switch to the ingest of the GOES-R Access Subsystem and | | | | | other external interfaces as defined in the appropriate IRDs, which vary by | | | | | product, are located in Appendix D of this GS F&PS. | | | 1 | 1 | | | CCEDO | | | CC Antenna allocated Latenay requirements which were by more let | | GSFPS- | | | GS Antenna-allocated Latency requirements, which vary by product, are | | GSFPS-<br>3131 | | | GS Antenna-allocated Latency requirements, which vary by product, are located in Appendix C of this GS F&PS. (CCR01291) | | Поор | | | ES-R/Code 417 Version 1.10 | |----------------|------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>3148 | | · | GS product latency and refresh requirements, as applied from the OSD antenna IF switch to the AWIPS demarcation point, are located in Appendix E of this GS F&PS. | | GSFPS-<br>3198 | All | Base | The GS <b>shall</b> produce all End-Products in accordance with the definitions in Appendix A as applied through Appendices A-E. (CCR01292) | | GSFPS-<br>2786 | All<br>(CCR-01414) | Base | The GS <b>shall</b> capture, process, and store a minimum of 99.9% of all theoretically available observable data downlinked from each GOES-R satellite when the system is operationally available, averaged over a 30-day period. | | GSFPS-<br>2439 | GAS<br>(CCR-01430) | | The GS GOES-R Access Subsystem <b>shall</b> meet the GOES-R Access Subsystem-allocated Ground Latency requirements in Appendix B when the system is operationally available. (CCR01291, CCR01414) | | GSFPS-<br>1245 | | | 4.6 Verification and Validation | | GSFPS-<br>1252 | All | Base | The GS <b>shall</b> accommodate testing of both nominal operations and failure scenarios, including automated responses to out-of-limit conditions. | | GSFPS-<br>1254 | All | Base | The GS <b>shall</b> include automated tests for validating and verifying GS functional capabilities and performance after repairs or modifications. | | GSFPS-<br>1256 | All | Base | The GS <b>shall</b> permit an operator to monitor and control built-in tests. | | GSFPS-<br>1258 | All | Base | The GS <b>shall</b> include monitoring test points and indicators to support function verification, performance analysis, and fault isolation. | | GSFPS-<br>1262 | All | Base | The GS design <b>shall</b> prevent disruption to the operational system from activities such as upgrades, routine and preventive maintenance, internal integration and testing, and external interface testing. | | GSFPS-<br>1263 | | | 4.7 Segment-wide Requirements | | GSFPS-<br>2918 | All | Base | The GS <b>shall</b> be designed to utilize the International System of Units (SI, metric measurement system), in concurrence with NPD 8010.2, Use of the SI (Metric) System of Measurement in NASA Programs. | | GSFPS-<br>2445 | All | Base | The GS <b>shall</b> comply with the DOC/NOAA/NESDIS enterprise and security architectures and associated reference models. | | GSFPS-<br>3105 | All<br>(CCR-01290) | Base | The GS <b>shall</b> have the capability to retrieve stored and on-line data, files, messages, and information. | | GSFPS-<br>1264 | | | 4.7.1 Security | | GSFPS-<br>1266 | All | Base | The GS <b>shall</b> comply with all security requirements for a Major Application rated as High Impact as outlined in NIST-SP-800-53, the Department of Commerce IT Security Program Policy and Minimum Implementation Standards, and the NOAA IT Security Manual. | | GSFPS-<br>2440 | GS Ktr,<br>ANT, OSO<br>(CCR-01430) | Base | The GS <b>shall</b> have multi-layered security (Defense in Depth) as defined in NIST SP 800-82. (CCR01305, CCR01455) | | GSFPS-<br>3203 | GS Ktr | Base | The GS <b>shall</b> be designed such that the mission management functionality meets all security controls recommended for a Control Network with stringent security requirements as defined in NIST SP 800-82. (CCR01305, CCR01455) | | GSFPS-3204 GS Ktr Base The GS mission management functionality shall comply with the secur recommendations for a Supervisory Control and Data Acquisition (SCADA) system found in NIST SP 800-82. (CCR01455) GSFPS-2441 GSFPS-2441 GSFPS-3118 GSFPS-3118 Base GS systems shall implement common Configurations such as the Federal Deskto Core Configuration. GSFPS-3118 GS systems shall implement common security configurations using the following order of precedence: a) NOAA b) DOC c) NIST d) Defense Information Systems Agency (DISA) e) Center for Internet Security (CIS) (CCR01304) GSFPS-2442 GSFPS-2442 GSFPS-2443 GSFPS-2444 GS | | onsible Organiza | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | recommendations for a Supervisory Control and Data Ácquisition (SCADA) system found in NIST SP 800-82. (CCR01455) The GS shall operate correctly as intended on systems using National Checklist Program Common Configurations such as the Federal Deskt Core Configuration. GSFPS- All Base GS systems shall implement common security configurations using the following order of precedence: a) NOAA b) DOC c) NIST d) Defense Information Systems Agency (DISA) e) Center for Internet Security (CIS) (CCR01304) GSFPS- All Base The GS shall allow system operation, maintenance, update and/or patching of software without altering configuration settings from the approved National Checklist Program Common Configurations such as Federal Desktop Core Configuration. GSFPS- All Base The GS shall be designed to enforce the principle of "least privilege" sthat authenticated users are limited to accessing only those system objects required for the normal performance of their duties. (CCR01305) GSFPS- GS Ktr, ANT (CCR-01430) GSFPS- GS Ktr, Base ANT (CCR-01430) GSFPS- All Base The GS shall employ multi-factor identification and authentication that separate from the administrative network, per NISTSP 800-82, Draft G to Industrial Control Systems (ICS) Security. (CCR01305) GSFPS- All Base The GS shall employ smart card login in accordance with Homeland Security Presidential Directive 12 (HSPD-12). (CCR01305) GSFPS- All Base The GS shall include anti-malware and Host-based Intrusion Preventic System (HIPS) functions within the development, integration and test, operations environments. (CCR1304) 4.7.2 Telecommunications The GS command and control circuits shall have a service level rating Critical. The GS command and control circuits shall have a service level rating Ordical. The GS command and control circuits shall have a service level rating Ordical. The GS command and control circuits shall have a service level rating of Routine. The GS circuit shall provide bandwidth to transport required products all GSFPS- OSO The GS ci | ID | Dev. Effort | Option | Requirement | | Checklist Program Common Configurations such as the Federal Deskt Core Configuration. GSFPS- All Base GS systems shall implement common security configurations using the following order of precedence: a) NOAA b) DOC c) NIST d) Defense Information Systems Agency (DISA) e) Center for Internet Security (CIS) (CCR01304) GSFPS- All Base The GS shall allow system operation, maintenance, update and/or patching of software without altering configuration settle approved National Checklist Program Common Configurations such as Federal Desktop Core Configuration. GSFPS- All Base The GS shall be designed to enforce the principle of "least privilege" settle authenticated users are limited to accessing only those system objects required for the normal performance of their duties. (CCR0130) GSFPS- GS Ktr, ANT (CCR-01430) GSFPS- GS Ktr, ANT (CCR-01430) GSFPS- All Base The GS shall employ multi-factor identification and authentication that separate from the administrative network, per NISTS 800-82, Draft G to Industrial Control Systems (ICS) Security. (CCR01305) GSFPS- ANT (CCR-01430) GSFPS- All Base The GS shall employ smart card login in accordance with Homeland Security Presidential Directive 12 (HSPD-12). (CCR01305) GSFPS- All Base The GS shall include anti-mature and Host-based Intrusion Preventic System (HIPS) functions within the development, integration and test, operations environments. (CCR1304) 4.7.2 Telecommunications GSFPS- OSO The GS command and control circuits shall have a service level rating Critical. GSFPS- OSO The GS command and control circuits shall have a service level rating of Routine. The GS shall operate per IPV6 standards as given in RFC2460 - Interprotocol, Version 6 (IPV6) Specification. The GS command and control circuits shall have a service level rating of Routine. The GS circuits shall provide bandwidth to transport required products all GOES-R series satellites. GSFPS- OSO Each GS circuit procured shall satisfy the capacity, performance, and protocol specifications that are do | | GS Ktr | Base | | | Sample S | | All | Base | The GS <b>shall</b> operate correctly as intended on systems using National Checklist Program Common Configurations such as the Federal Desktop Core Configuration. | | Base The GS shall employ multi-factor identification and authentication that separate from the amplification and security (CCR01304) GSFPS- | | All | Base | GS systems <b>shall</b> implement common security configurations using the following order of precedence: | | patching of software without altering configuration settings from the approved National Checklist Program Common Configurations such as Federal Desktop Core Configuration. GSFPS- 2443 Base The GS shall be designed to enforce the principle of "least privilege" s that authenticated users are limited to accessing only those system objects required for the normal performance of their duties. (CCR0130: GSFPS- 1491 GSFPS- GS Ktr, ANT (CCR-01430) GSFPS- GS Ktr, ANT (CCR-01430) GSFPS- 3132 GSFPS- All Base The GS shall employ multi-factor identification and authentication that separate from the administrative network, per NISTSP 800-82, Draft G to Industrial Control Systems (ICS) Security. (CCR01305) GSFPS- All Base The GS shall employ smart card login in accordance with Homeland Security Presidential Directive 12 (HSPD-12). (CCR01305) GSFPS- 3200 Base The GS shall include anti-malware and Host-based Intrusion Preventic System (HIPS) functions within the development, integration and test, operations environments. (CCR1304) GSFPS- 4.7.2 Telecommunications The GS shall operate per IPv6 standards as given in RFC2460 - Interr Protocol, Version 6 (IPv6) Specification. GSFPS- OSO The GS command and control circuits shall have a service level rating Critical. GSFPS- OSO The GS circuits shall provide bandwidth to transport required products all GOES-R series satellites. GSFPS- OSO Each S circuit procured shall satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). | | | | b) DOC c) NIST d) Defense Information Systems Agency (DISA) e) Center for Internet Security (CIS) | | that authenticated users are limited to accessing only those system objects required for the normal performance of their duties. (CCR0130) (GSFPS-1491 ANT (CCR-01430) (CCR-01 | | All | Base | patching of software without altering configuration settings from the approved National Checklist Program Common Configurations such as the | | Separate from the administrative network, per NISTSP 800-82, Draft G to Industrial Control Systems (ICS) Security. (CCR01305) GSFPS-3132 | | All | Base | The GS <b>shall</b> be designed to enforce the principle of "least privilege" so that authenticated users are limited to accessing only those system objects required for the normal performance of their duties. <i>(CCR01305)</i> | | Security Presidential Directive 12 (HSPD-12). (CCR01305) GSFPS-3200 All Base The GS shall include anti-malware and Host-based Intrusion Preventic System (HIPS) functions within the development, integration and test, operations environments. (CCR1304) GSFPS-1267 All Base The GS shall operate per IPv6 standards as given in RFC2460 - Interrection Protocol, Version 6 (IPv6) Specification. GSFPS-2611 GSFPS-2611 GSFPS-2612 GSFPS-2612 GSFPS-2613 The GS circuits shall have a service level rating of Routine. The GS circuits shall provide bandwidth to transport required products all GOES-R series satellites. GSFPS-2613 Each GS circuit procured shall satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS shall conduct all routine intra-element and inter-element | | ANT | Base | The GS <b>shall</b> employ multi-factor identification and authentication that is separate from the administrative network, per NISTSP 800-82, Draft Guide to Industrial Control Systems (ICS) Security. (CCR01305) | | System (HIPS) functions within the development, integration and test, operations environments. (CCR1304) 4.7.2 Telecommunications GSFPS-1267 All Base The GS shall operate per IPv6 standards as given in RFC2460 - Interr Protocol, Version 6 (IPv6) Specification. GSFPS-2611 GSFPS-2611 GSFPS-2612 GSFPS-2612 GSFPS-2613 The GS data circuits shall have a service level rating of Routine. The GS circuits shall have a service level rating of Routine. The GS circuits shall provide bandwidth to transport required products all GOES-R series satellites. Each GS circuit procured shall satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS shall conduct all routine intra-element and inter-element | | ANT | Base | | | GSFPS- 1269 Base The GS shall operate per IPv6 standards as given in RFC2460 - Interned Protocol, Version 6 (IPv6) Specification. GSFPS- 2611 GSFPS- 2612 GSFPS- 2612 GSFPS- 2613 The GS command and control circuits shall have a service level rating Critical. The GS data circuits shall have a service level rating of Routine. The GS circuits shall have a service level rating of Routine. The GS circuits shall provide bandwidth to transport required products all GOES-R series satellites. Each GS circuit procured shall satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS shall conduct all routine intra-element and inter-element | | All | Base | The GS <b>shall</b> include anti-malware and Host-based Intrusion Prevention System (HIPS) functions within the development, integration and test, and operations environments. (CCR1304) | | Protocol, Version 6 (IPv6) Specification. GSFPS- 2611 GSFPS- 2612 GSFPS- 2612 GSFPS- 2612 GSFPS- 2613 The GS command and control circuits <b>shall</b> have a service level rating of Routine. The GS data circuits <b>shall</b> have a service level rating of Routine. The GS circuits <b>shall</b> provide bandwidth to transport required products all GOES-R series satellites. GSFPS- 2613 Each GS circuit procured <b>shall</b> satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS <b>shall</b> conduct all routine intra-element and inter-element | | | | 4.7.2 Telecommunications | | Critical. GSFPS- 2612 GSFPS- 2612 GSFPS- 2613 Critical. The GS data circuits <b>shall</b> have a service level rating of Routine. The GS circuits <b>shall</b> provide bandwidth to transport required products all GOES-R series satellites. GSFPS- 2613 Each GS circuit procured <b>shall</b> satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS <b>shall</b> conduct all routine intra-element and inter-element | | All | Base | The GS <b>shall</b> operate per IPv6 standards as given in RFC2460 - Internet Protocol, Version 6 (IPv6) Specification. | | GSFPS- OSO GSFPS- OSO GSFPS- OSO GSFPS- OSO GSFPS- All Base The GS circuits <b>shall</b> provide bandwidth to transport required products all GOES-R series satellites. Each GS circuit procured <b>shall</b> satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS <b>shall</b> conduct all routine intra-element and inter-element | | OSO | | The GS command and control circuits <b>shall</b> have a service level rating of Critical. | | 2448 all GOES-R series satellites. GSFPS- OSO Each GS circuit procured <b>shall</b> satisfy the capacity, performance, and protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS <b>shall</b> conduct all routine intra-element and inter-element | | OSO | | | | protocol specifications that are documented in the applicable interface control document (ICD). GSFPS- All Base The GS <b>shall</b> conduct all routine intra-element and inter-element | | OSO | | The GS circuits <b>shall</b> provide bandwidth to transport required products for all GOES-R series satellites. | | | | OSO | | protocol specifications that are documented in the applicable interface | | | | All | Base | | | GSFPS-<br>1271 4.7.3 Accessibility | | | | 4.7.3 Accessibility | | | onsible Organiz | | | |----------------|-------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1273 | All | Base | The GS <b>shall</b> be accessible to individuals with disabilities as required by Section 508 of the Rehabilitation Act (29 USC 749d) as amended. | | GSFPS-<br>1274 | All | Base | The GS <b>shall</b> meet or exceed the requirements given in 36 CFR Parts 1193, Telecommunications Act Accessibility Guidelines and 1194, Electronic and Information Technology Accessibility Standards. | | GSFPS-<br>2615 | All | Base | The GS <b>shall</b> provide the capability for the operator to send to displays, printers, and files any of the following: spacecraft, instrument, or Ground Segment data and information used or generated by a GS function. | | GSFPS-<br>1278 | | | 4.7.4 Electromagnetic Interference | | GSFPS-<br>1280 | All | Base | The GS <b>shall</b> comply with the electromagnetic interference (EMI) requirements of FCC rules CFR 47, Part 15, Subpart B, Sections 15.107 and 15.109 for Class A or B conducted and radiated emissions. | | GSFPS-<br>1282 | | | 4.7.5 Operational Integrity | | GSFPS-<br>1284 | All | Base | The GS <b>shall</b> perform all functions, including those occurring simultaneously, with no interference with or performance degradation of any other GOES-R segment functionality. | | GSFPS-<br>1286 | All | Base | The GS <b>shall</b> perform all functions, including those occurring simultaneously, with no interference with or performance degradation of any other functionality within the GS. | | GSFPS-<br>1288 | All | Base | The GS <b>shall</b> perform all functions, including those occurring simultaneously, with no interference with or performance degradation of any other NOAA ground system. | | GSFPS-<br>1289 | | | 4.7.6 Time References | | GSFPS-<br>1291 | All<br>(CCR-01430) | Base | The GS <b>shall</b> use the Coordinated Universal Time (UTC) reference for all time-of-day related data processing. | | GSFPS-<br>1293 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide time and date annotation with a resolution of at least 10 microseconds. | | GSFPS-<br>3013 | All<br>(CCR-01430) | Base | The GS <b>shall</b> synchronize all nodes at the primary facility utilizing the timing signal from the timing system resident at each respective primary facility location. | | GSFPS-<br>2449 | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> synchronize all nodes at the RBU utilizing the timing signal from the timing system resident at the RBU. | | GSFPS-<br>2450 | All<br>(CCR-01430) | Base | No two nodes in the GS <b>shall</b> vary by more than 5 microseconds from the site master clock. | | GSFPS-<br>1294 | | | 4.7.7 Data Processing Error Rate | | GSFPS-<br>1296 | All | Base | The GS <b>shall</b> process raw data through production with less than one error in 10E12 bits processed, averaged daily. | | GSFPS-<br>2616 | | | 4.7.8 Extensibility, Modularity, and Scalability | | GSFPS-<br>2617 | All | Base | The GS <b>shall</b> be extensible to operate up to four (4) satellites simultaneously. | | GSFPS-<br>2618 | All | Base | The GS <b>shall</b> be implemented such that all elements can be independently scalable by at least 300% to accommodate any future growth, including the exercise of contract options. | | | 1 | İ | | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. | | Responsible Organization: GOES-R/Code 417 Version 1.10 | | | | | | |----------------|--------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | ID | Dev. Effort | Option | Requirement | | | | | GSFPS-<br>2622 | All | Base | Individual GS computer processor CPU utilization <b>shall</b> not exceed 70%, averaged daily. | | | | | GSFPS-<br>2623 | All | Base | Individual GS computer processor memory utilization <b>shall</b> not exceed 50%, averaged daily. | | | | | GSFPS-<br>2771 | All | Base | The GS <b>shall</b> , with the baseline delivery as well as with deliveries associated with any exercised contract options, size all processing, storage and throughput for at least 50% reserve capacity of that necessary to meet performance requirements. | | | | | GSFPS-<br>2625 | All | Base | The GS <b>shall</b> use modular hardware (Line Replaceable Units) and software that allows changes and enhancements to be performed without interfering with GS operations. | | | | | GSFPS-<br>2626 | All | Base | GS hardware <b>shall</b> use functional modules that allow replacement to improve performance, reliability or for other reasons. | | | | | GSFPS-<br>2764 | All | Base | The GS <b>shall</b> be modular/plug-and-play such that it will accommodate individual algorithm changes, as well as the deletion of existing and the addition of new algorithms, without the need for recompilation of other software modules. | | | | | GSFPS-<br>2792 | All | Base | The GS <b>shall</b> be designed such that it is modular, extensible, extendable and open. | | | | | GSFPS-<br>3014 | All | Base | The GS <b>shall</b> provide the capability for increased automation of GS operations throughout the life of the program. | | | | | GSFPS-<br>3092 | All | Base | The GS development and Integration and Test (I&T) environments <b>shall</b> be independently and simultaneously fully functional from the IF Switch through the GS. | | | | | GSFPS-<br>3093 | All | Base | The GS elements <b>shall</b> each have independent and simultaneously fully functional Development and I&T environments from the element inputs through outputs, with the MM demarcation point at the IF Switch. | | | | | GSFPS-<br>3121 | | | 4.7.9 Configuration Management System | | | | | GSFPS-<br>3122 | All | Base | The GS <b>shall</b> capture, manage, and update the baseline configuration of the GS hardware and software. <i>(CCR01305)</i> | | | | | GSFPS-<br>3123 | GS Ktr | Base | The GS configuration management system <b>shall</b> include maintenance history accounting that enables tracking, and reporting at the component, subsystem, element and GS levels. | | | | | GSFPS-<br>3124 | GS Ktr | Base | The GS configuration management system <b>shall</b> enable sharing/linking anomaly reporting and status, software build, and history information such that configuration management system information may be queried and reported by information (data fields) contained in each of those functions. | | | | | | | | ES-R/Code 41/ Version 1.10 | |----------------|-------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>3125 | GS Ktr | Base | The GS configuration management system <b>shall</b> enable reporting and tracking of data by, at a minimum: | | | | | a) Anomaly/Incident Report Identifier b) Hardware/Software CI Identifier c) Hardware component identifier d) Subsystem identifier e) Element identifier f) Software Build Identifier g) Software Version Number h) COTS identifier/nomenclature i) Operator j) Date range k) Problem type l) Verification event | | GSFPS-<br>3126 | GS Ktr | Base | The GS configuration management system's anomaly tracking capability <b>shall</b> include, at a minimum, the capabilities of the existing anomaly tracking systems. | | GSFPS-<br>2819 | | | 4.8 Development Environment | | GSFPS-<br>2828 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide a development environment for GS software development and checkout for all GS elements. | | GSFPS-<br>2829 | GS Ktr | Base | The GS development environment <b>shall</b> support L1b Calibration and Validation (Cal/Val), L1b algorithm maintenance, and L2+ algorithm/parameter maintenance as well as the software development for all GS elements. | | GSFPS-<br>2830 | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> be capable of hosting the GS operational baseline software. | | GSFPS-<br>2309 | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> be sized such that the simultaneous execution of all elements of the GS software baseline will meet operational performance requirements. | | GSFPS-<br>2914 | GS Ktr, ANT (CCR-01430) | Base | The portion of the GS development environment at WCDAS <b>shall</b> provide access to all data necessary for the offline execution of any single process or set of processes (including implemented algorithms) nominally resident at WCDAS. | | GSFPS-<br>2831 | GS Ktr | Base | The GS development environment <b>shall</b> provide the selectable capability to capture and store logs, configurations, performance data, and other artifacts associated with development activities. | | GSFPS-<br>2832 | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> provide tools to enable the change, recompilation, and execution of any segment/module of the source code from any GS element. | | GSFPS-<br>2833 | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> provide the capability to develop, modify and checkout the integrated operation of all GS databases, tables and configuration files. | | GSFPS-<br>2834 | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> utilize the same configuration management and version control tools as the operational environment. | | GSFPS-<br>2835 | GS Ktr | Base | The portion of the GS development environment at NSOF <b>shall</b> have at least 25 TB of dedicated storage for use by the Government. | | Dov Effort | | | |-------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Dev. Effort | Option | Requirement | | GS Ktr | Base | The portion of the GS development environment at WCDAS <b>shall</b> have at least 2 TB of dedicated storage. | | GS Ktr | Base | The GS development environment <b>shall</b> include C/C++ and Fortran 90/95 compilers. | | GS Ktr | Base | The GS development environment <b>shall</b> include Java, and Perl and shell scripting languages. | | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> have the capability to export compiled code segments and associated configuration and other support files to the operational and integration and test (I&T) environments following established configuration management (CM) processes. | | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> be physically or logically segregated from other GS environments such that data and developed/compiled code can only be pulled from or pushed to other GS environments. | | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> provide tools to monitor and display GS software execution performance and compare relative to F&PS performance requirements. | | GS Ktr, ANT (CCR-01430) | Base | The GS development environment <b>shall</b> provide local workstation operator/developer access and control at WCDAS. | | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> provide local workstation operator/developer access and control at NSOF. | | GS Ktr | Base | The GS development environment <b>shall</b> provide the capability to modify, execute, and checkout algorithms individually or in groups, to support the verification and validation of product quality requirements and product generation performance. | | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> be physically or logically segregated from other GS environments such that instances of any portion of the GS software baseline executing on the development environment cannot interfere with nor degrade the performance of software executing on any other environment. | | GS Ktr | Base | The GS development environment <b>shall</b> provide the capability to capture, store, and export output of the offline execution of any single or set of algorithms. | | GS Ktr | Base | The GS development environment <b>shall</b> have the capability to replay Transfer Frames from the 5-day revolving temporary storage back as a separate virtual satellite flow. | | GS Ktr | Base | The GS development environment <b>shall</b> have access to engineering telemetry data as it becomes available to the GS. | | | | 4.8.1 Calibration/Validation / WCDAS Product Maintenance | | GS Ktr | Base | The portion of the GS development environment located at WCDAS <b>shall</b> have local access to L0 data as it becomes available to the GS at WCDAS. | | GS Ktr | Base | The portion of the GS development environment at WCDAS <b>shall</b> have local access to all input and output data and products as they are processed by the GS. | | | GS Ktr GS Ktr All (CCR-01430) All (CCR-01430) GS Ktr, ANT (CCR-01430) All (CCR-01430) GS Ktr GS Ktr GS Ktr GS Ktr | GS Ktr Base GS Ktr Base GS Ktr Base All (CCR-01430) All (CCR-01430) GS Ktr, ANT (CCR-01430) All (CCR-01430) GS Ktr Base | | | | ES-R/Code 417 Version 1.10 | |----------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | Requirement | | GS Ktr | Base | The GS development environment <b>shall</b> be capable of producing products nominally generated at WCDAS from L0 data, using existing and modified implemented algorithms and calibration coefficients, via local operator/developer access at WCDAS. | | GS Ktr | Base | The portion of the GS development environment located at WCDAS <b>shall</b> be capable of ingesting and processing GOES-R compatible format L0 test data sets. | | GS Ktr | Base | The GS development environment <b>shall</b> have the Interactive Data Language (IDL) and image processing software (e.g. ENVI) installed. | | GS Ktr | Base | The portion of the GS development environment located at WCDAS <b>shall</b> have the capability to make and checkout changes to the calibration coefficients. | | GS Ktr | Base | The GS development environment <b>shall</b> provide the capability to make updated calibration coefficient databases available to the operational and I&T environments following established CM procedures. | | GS Ktr | Base | The portion of the GS development environment at WCDAS <b>shall</b> make products produced on the development environment available for analysis and local storage. | | All<br>(CCR-01430) | Base | The GS development environment <b>shall</b> provide a removable media capability at each site. | | GS Ktr, ANT<br>(CCR-01430) | Base | The GS development environment <b>shall</b> provide for security-compliant thin-client (virtual machine) access to the development environment from external algorithm maintenance or Cal/Val facilities. (Note: Thin client is defined to mean that no local software applications are transferred to or run on the remote client machine). | | GS Ktr | Base | The GS development environment <b>shall</b> provide access to all data necessary for the offline execution of any single L2+ algorithm or set of algorithms. | | GS Ktr | Base | The GS development environment <b>shall</b> host tools, provided by the Government to support algorithm maintenance and calibration /validation activities. | | GS Ktr | Base | The portion of the GS development environment at WCDAS <b>shall</b> be capable of ingesting and processing GOES-R compatible format L1b test data sets for those L2+ end-products nominally resident at WCDAS. | | | | 4.8.2 Level 2+ Algorithm Maintenance | | GS Ktr | Base | The portion of the GS development environment located at NSOF <b>shall</b> provide local access to L1b and L2+ data and products from the GRB as they become available to the GS at NSOF. (CCR01286) | | GS Ktr | Base | The portion of the GS development environment located at NSOF <b>shall</b> provide access to operational L2+ products as they are produced. | | GS Ktr | Base | The portion of the GS development environment located at NSOF <b>shall</b> provide local access to ancillary data as it becomes available to the GS at NSOF. | | GS Ktr | Base | The portion of the GS development environment located at NSOF <b>shall</b> be capable of producing L2+ products using modified L2+ algorithms, modified algorithm parameters and alternate ancillary data. | | | GS Ktr GS Ktr GS Ktr GS Ktr GS Ktr All (CCR-01430) GS Ktr, ANT (CCR-01430) GS Ktr GS Ktr GS Ktr GS Ktr | Dev. Effort<br>GS KtrOption<br>BaseGS KtrBaseGS KtrBaseGS KtrBaseGS KtrBaseGS KtrBaseAll<br>(CCR-01430)BaseGS Ktr, ANT<br>(CCR-01430)BaseGS KtrBaseGS KtrBaseGS KtrBaseGS KtrBaseGS KtrBaseGS KtrBaseGS KtrBase | | Dev. Effort GS Ktr GS Ktr | Option<br>Base | Requirement The portion of the GS development environment located at NSOF <b>shall</b> be capable of ingesting and processing GOES-R compatible format L1b test data sets. | |---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | capable of ingesting and processing GOES-R compatible format L1b test | | GS Ktr | 1 | | | | Base | The portion of the GS development environment located at NSOF <b>shall</b> make L2+ products produced on the development environment available for developer analysis and local storage in the development environment. | | GS Ktr | Base | The portion of the GS development environment located at NSOF <b>shall</b> have the capability to make and checkout changes to run-time configurable algorithm parameters on the development environment. | | GS Ktr | Base | The GS development environment <b>shall</b> provide the capability to export updated run-time configurable algorithm parameters to the operational and I&T environments following established CM procedures. | | | | 4.9 Integration and Test Environment | | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide an environment to support software I&T for all GS elements. | | GS Ktr | Base | The GS I&T environment <b>shall</b> be capable of processing all GOES-R data. | | GS Ktr | Base | The GS I&T environment <b>shall</b> have access to engineering telemetry data as it becomes available to the GS. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> provide operator access and control. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> be sized such that the execution of all elements of the GS software baseline simultaneously will meet operational performance requirements. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> be physically or logically segregated from other GS environments such that instances of any portion of the GS software baseline executing on the I&T environment cannot interfere with nor degrade the performance of software executing on any other environment. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> utilize the same software configuration management and version control tools as the operational environment. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> provide tools to monitor and display software execution performance and compare relative to GS-F&PS performance requirements. | | GS Ktr | Base | The GS I&T environment <b>shall</b> be capable of exporting product generation output data to the development environment. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> be capable of the operational implementation of GS software, including databases and algorithms, following established configuration management processes, and without disruption of mission operations. | | GS Ktr | Base | The GS I&T environment <b>shall</b> have the capability to capture and store cumulative offline product generation output from 36 hours of continuous processing. | | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> accommodate independent element and subsystem tests, end-to-end tests, integration and verification activities, certification and accreditation security tests, without interfering with ongoing operations. | | | All (CCR-01430) All (CCR-01430) All (CCR-01430) All (CCR-01430) All (CCR-01430) All (CCR-01430) GS Ktr All (CCR-01430) GS Ktr All (CCR-01430) | GS Ktr Base All (CCR-01430) GS Ktr Base GS Ktr Base All (CCR-01430) All (CCR-01430) All (CCR-01430) Base (CCR-01430) Base (CCR-01430) Base (CCR-01430) Base (CCR-01430) Base All (CCR-01430) GS Ktr Base All (CCR-01430) Base All (Base All (CCR-01430) Base | | | | | ES-R/Code 417 Version 1.10 | |----------------|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1248 | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> provide the selectable capability to capture and store logs, configurations, performance data, and other artifacts associated with test activities. | | GSFPS-<br>1250 | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> accommodate test and verification of planned modifications under operational-equivalent conditions. | | GSFPS-<br>1260 | All<br>(CCR-01430) | Base | The GS I&T environment <b>shall</b> accommodate input and output of test data via removable physical media. | | GSFPS-<br>2994 | | | 4.10 Operator Human-Machine Interface | | GSFPS-<br>3016 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide a capability for information entry and editing. | | GSFPS-<br>3017 | GS Ktr | Base | The GS <b>shall</b> display any single page simultaneously and independently at any number of viewing locations, as designated by the operator. | | GSFPS-<br>3018 | GS Ktr | Base | The GS <b>shall</b> provide the capability to create, customize, and maintain display page and graph definitions. | | GSFPS-<br>3019 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide for the definition of abbreviated keyboard entries for executing operator directives. | | GSFPS-<br>3020 | GS Ktr | Base | The GS <b>shall</b> display up to ten (10) parameters on a single graph. | | GSFPS-<br>3021 | All<br>(CCR-01430) | Base | The GS <b>shall</b> have consistent operator human-machine interfaces for functions within the GS. | | GSFPS-<br>3022 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide access to available functions through a human-machine interface, allowing the operator to access tools and information and to perform actions. | | GSFPS-<br>3023 | All<br>(CCR-01430) | Base | The GS <b>shall</b> have consistent visual and audible alarms for segment, elements, and subsystems. | | GSFPS-<br>3024 | All<br>(CCR-01430) | Base | The GS <b>shall</b> generate event messages for all GS and satellite events. | | GSFPS-<br>1332 | All<br>(CCR-01430) | Base | The GS <b>shall</b> allow the operator to configure the format and contents of displays. | | GSFPS-<br>1334 | All<br>(CCR-01430) | Base | The GS <b>shall</b> display information in text and graphical formats. | | GSFPS-<br>1344 | All<br>(CCR-01430) | Base | The GS <b>shall</b> acknowledge operator inputs within 0.5 seconds. | | GSFPS-<br>1346 | All<br>(CCR-01430) | Base | The GS <b>shall</b> update displays of rapidly changing information at a maximum of twice per second. | | GSFPS-<br>1362 | GS Ktr | Base | The GS <b>shall</b> permit an operator to enable and disable individual EM reporting status and alarms. | | GSFPS-<br>1444 | All<br>(CCR-01430) | Base | The GS <b>shall</b> produce formatted hardcopy of displays, files, logs, and query responses upon operator request. | | GSFPS-<br>1448 | All<br>(CCR-01430) | Base | The GS <b>shall</b> display notification of all non-nominal conditions to the GS operators. | | GSFPS-<br>3114 | All<br>(CCR-01430) | Base | The GS <b>shall</b> retain critical events on the display until acknowledged by the operator. | | GSFPS-<br>1452 | All<br>(CCR-01430) | Base | The GS <b>shall</b> generate notification messages indicating at least three (3) levels of severity, based on authorized operator-configurable conditions and criteria. | | | onsible Organiz | | | |----------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2634 | All<br>(CCR-01430) | Base | The GS <b>shall</b> permit the display of a minimum of 20 active windows, including text and graphics displays, on a single operator session. | | GSFPS-<br>1654 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide for the tabular and graphical display of data according to default and operator-specified display characteristics. | | GSFPS-<br>1299 | | | 5 ENTERPRISE MANAGEMENT REQUIREMENTS | | GSFPS-<br>1301 | | | 5.1 Overview | | GSFPS-<br>1303 | | | Section 5 specifies the requirements associated with the Enterprise Management (EM) functional element - those requirements pertaining to oversight and supervision of the whole GS. | | GSFPS-<br>1305 | | | In the EM context, supervision is defined as the ability to monitor, report, and provide capability for an operator response to anomalous conditions. GS operators at all sites will have access to the EM functionality for insight to their local site and to the distributed GS components, infrastructure, and interfaces. As the EM functionality receives status and other information provided by the distributed GS functions, operators will be able to monitor, trend, and perform other supervisory activities. While direct control of various systems will be implemented within the individual elements, the EM function provides operators with necessary insight to manage the end-to-end GS. | | GSFPS-<br>1308 | | | 5.2 General Enterprise Management | | GSFPS-<br>2451 | GS Ktr | Base | The GS <b>shall</b> collect a heartbeat status for all components (hardware and software) in the GS. | | GSFPS-<br>2452 | GS Ktr | Base | The GS <b>shall</b> provide complete reports of data associated with all detected anomalies for all GS components (hardware and software) determined to be critical to the performance of the GS. | | GSFPS-<br>1310 | GS Ktr | Base | The GS EM functions <b>shall</b> be interoperable with GOES-R elements located at facilities hosting GS functions. | | GSFPS-<br>1312 | GS Ktr | Base | The GS <b>shall</b> provide EM functions to GS operators located at any facility hosting GS functions. | | GSFPS-<br>1314 | GS Ktr | Base | The GS <b>shall</b> permit operators at each facility hosting GS functions to access EM functions for GS elements at that facility, independent of the connectivity status of the other facilities hosting GS functions. | | GSFPS-<br>2627 | GS Ktr | Base | The GS shall capture event messages of EM events. | | GSFPS-<br>2628 | GS Ktr | Base | The GS <b>shall</b> store event messages of all GS and satellite events for the life of the mission. | | GSFPS-<br>3106 | GS Ktr | Base | The GS <b>shall</b> provide the capability for immediate element operator access to an operator-configurable subset of element-level events for a period of 90 days. | | GSFPS-<br>2629 | GS Ktr | Base | The GS <b>shall</b> selectively filter EM event messages for forwarding to EM based on operator definition. | | GSFPS-<br>2630 | GS Ktr | Base | The GS <b>shall</b> forward filtered event messages of EM events to the EM. | | GSFPS-<br>1360 | GS Ktr | Base | The GS <b>shall</b> permit an operator to manually override any EM automated control process or operational constraint. | | | onsible Organiz | | | |----------------|----------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1316 | | | 5.2.1 Enterprise Management Data Management | | GSFPS-<br>1318 | GS Ktr | Base | The GS <b>shall</b> display EM data to GS operators located at any facility hosting GS functions. | | GSFPS-<br>1320 | GS Ktr | Base | The GS <b>shall</b> provide for an operator retrieval of stored and online EM data. | | GSFPS-<br>1324 | GS Ktr | Base | The GS <b>shall</b> export at operator request, selected EM data, EM logs, and software on removable physical media. | | GSFPS-<br>1326 | GS Ktr | Base | The GS <b>shall</b> retrieve, display, export, store for the life of the mission, and print operator-selected EM logs, EM reports, and EM data associated with all GS and satellite events. | | GSFPS-<br>1336 | GS Ktr, GAS<br>(CCR-01430) | Base | The GS <b>shall</b> monitor and display the GOES-R Access Point interface status. | | GSFPS-<br>1338 | GS Ktr | Base | The GS <b>shall</b> display any EM-generated report via the operator HMI. | | GSFPS-<br>1340 | GS Ktr | Base | The GS <b>shall</b> generate reports of operator-selected EM data for an operator-selected time-span. | | GSFPS-<br>3107 | GS Ktr | Base | The GS <b>shall</b> have the capability to retrieve, display, trend, export (reports), store for the life of the mission, and print (reports) of performance measurements. | | GSFPS-<br>2731 | All<br>(CCR-01430) | Base | The GS <b>shall</b> require operator action to recover from manual interventions. | | GSFPS-<br>1342 | | | 5.2.2 Enterprise Management Performance | | GSFPS-<br>1348 | All<br>(CCR-01430) | Base | The GS <b>shall</b> provide operator notification of any monitored non-nominal condition within three seconds (3-seconds) of detection of the condition. | | GSFPS-<br>1350 | GS Ktr | Base | The GS <b>shall</b> retrieve and display within 10 seconds operator selected EM data and logs created within the last 90 days. | | GSFPS-<br>1352 | | | 5.3 Enterprise Supervision | | GSFPS-<br>1358 | GS Ktr | Base | The GS <b>shall</b> concurrently supervise the GS functions located at all facilities hosting GS functions. | | GSFPS-<br>1364 | GS Ktr | Base | The GS <b>shall</b> validate operator ground directive requests against allowable configurations. | | GSFPS-<br>1366 | All<br>(CCR-01430) | Base | The GS <b>shall</b> permit an operator to configure GS network functions. | | GSFPS-<br>1370 | All<br>(CCR-01430) | Base | The GS <b>shall</b> permit an operator to change selected configurations for supervised hardware or software. | | GSFPS-<br>1372 | GS Ktr | Base | The GS <b>shall</b> permit an operator to change selected EM configuration and control parameters. | | GSFPS-<br>1376 | All<br>(CCR-01430) | Base | The GS <b>shall</b> maintain established access privileges for different categories of GS operators and users. | | GSFPS-<br>1378 | All<br>(CCR-01430) | Base | The GS <b>shall</b> supervise access by operators at any GOES-R site. | | | onsible Organiz | | | |----------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1382 | GS Ktr | Base | The GS <b>shall</b> monitor and display GS resource operational status and performance, including; resource utilization (processing, storage, network and communications status), processing throughput, equipment configuration and availability, data accounting, data processing status, and product status, to support operations, trending, and performance analyses. (CCR01286) | | GSFPS-<br>1384 | GS Ktr | Base | The GS <b>shall</b> monitor and display the status and performance of processes, including the satellite communications links, MM, EM, PG, PD, antenna subsystems, and external interfaces. | | GSFPS-<br>1388 | GS Ktr | Base | The GS <b>shall</b> provide for correlation of failures to identify and process events such as cascading failures. | | GSFPS-<br>1390 | GS Ktr | Base | The GS <b>shall</b> monitor applications communications status between components of the GS, both between facilities and within each facility. | | GSFPS-<br>1392 | GS Ktr | Base | The GS <b>shall</b> monitor network communications status between components of the GS, both between facilities and within each facility. | | GSFPS-<br>1394 | GS Ktr | Base | The GS <b>shall</b> capture and store CPU resource usage performance measurements for 90 days. | | GSFPS-<br>1396 | GS Ktr | Base | The GS <b>shall</b> capture and store CPU loading performance measurements for 90 days. | | GSFPS-<br>1398 | GS Ktr | Base | The GS <b>shall</b> capture and store memory usage performance measurements for 90 days. | | GSFPS-<br>1400 | GS Ktr | Base | The GS <b>shall</b> capture and store disk access performance measurements (read and write) on a process basis for 90 days. | | GSFPS-<br>1404 | GS Ktr | Base | The GS <b>shall</b> capture and store network usage performance measurements on a physical link basis for 90 days. | | GSFPS-<br>1406 | GS Ktr | Base | The GS <b>shall</b> capture and store disk usage performance measurements on a hardware LRU basis for 90 days. | | GSFPS-<br>1420 | GS Ktr | Base | The GS <b>shall</b> collect and store reliability events for satellite and GS LRUs for the life of the mission. | | GSFPS-<br>1422 | GS Ktr | Base | The GS <b>shall</b> collect and store reliability events by hardware LRU for the life of the mission. | | GSFPS-<br>2950 | GS Ktr | Base | The GS <b>shall</b> collect and store reliability events by software configuration item (CI) and version identifier for the life of the mission. | | GSFPS-<br>1424 | GS Ktr | Base | The GS <b>shall</b> record planned outages for maintenance and upgrades as events. | | GSFPS-<br>1426 | GS Ktr | Base | The GS <b>shall</b> collect and store reliability event duration for each reliability event for the life of the mission. | | GSFPS-<br>1428 | GS Ktr | Base | The GS shall differentiate anomalies by severity level. | | GSFPS-<br>1430 | GS Ktr | Base | The GS <b>shall</b> capture and store logs of network events, configuration changes, and status information for the life of the mission. | | GSFPS-<br>1432 | GS Ktr | Base | The GS <b>shall</b> capture and store logs of events, configuration changes, and status information for the life of the mission. | | GSFPS-<br>1438 | All<br>(CCR-01430) | Base | The GS <b>shall</b> report GS performance against the latency and refresh criteria established in Appendix A, B, C, D, and E of the GS-F&PS. | | | onsible Organiz | | | |----------------|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1440 | GS Ktr | Base | The GS <b>shall</b> provide the capability to perform short- and long-term trend analysis of system, network, and communications performance. | | GSFPS-<br>1442 | GS Ktr | Base | The GS <b>shall</b> provide the capability to perform analysis of the resource impact of system, network, and communications modifications, enhancements, and reallocations. | | GSFPS-<br>1450 | GS Ktr | Base | The GS <b>shall</b> page designated personnel of non-nominal conditions and alerts (e.g., satellite, instrument, and GS conditions, alerts, and alarms) based on operator defined recipients. | | GSFPS-<br>1454 | GS Ktr | Base | The GS <b>shall</b> annotate and display notification messages with time and date of generation. | | GSFPS-<br>1456 | GS Ktr | Base | The GS <b>shall</b> store notification messages in a way that enables retrieval by operator-selectable attributes, including type, time, and text string, anomalous component identification. | | GSFPS-<br>1458 | GS Ktr | Base | The GS <b>shall</b> maintain visual notifications until the non-nominal condition is cleared. | | GSFPS-<br>3108 | GS Ktr | Base | The GS <b>shall</b> store notification messages for a period of 90 days. | | GSFPS-<br>1462 | GS Ktr | Base | The GS <b>shall</b> capture and store fault isolation information at the GS system and subsystem level, for both hardware and software Cls, for a period of 90 days. | | GSFPS-<br>1464 | GS Ktr | Base | The GS <b>shall</b> autonomously evaluate all supervised elements to identify anomalous conditions. | | GSFPS-<br>1466 | GS Ktr | Base | The GS <b>shall</b> autonomously initiate diagnostics to aid in isolating internal faults, using safeguards to prevent diagnostic operations from affecting other operations. | | GSFPS-<br>1468 | GS Ktr | Base | The GS <b>shall</b> send fault recovery directives to GS systems and subsystems. | | GSFPS-<br>1470 | GS Ktr | Base | The GS <b>shall</b> provide information to isolate faults between GS systems and external interfaces. | | GSFPS-<br>2824 | GS Ktr | Base | The GS <b>shall</b> supervise integration and test environment functions. | | GSFPS-<br>2845 | GS Ktr | Base | The GS <b>shall</b> supervise development environment functions. | | GSFPS-<br>1471 | | | 5.4 Common Support Services | | GSFPS-<br>1489 | GAS<br>(CCR-01430) | | The GS <b>shall</b> make user account information accessible to GS operations personnel for queries and EM report generation. | | GSFPS-<br>1495 | | | 5.5 Ground Segment Infrastructure | | GSFPS-<br>1496 | | | 5.5.1 External Interface Supervision | | GSFPS-<br>1498 | GS Ktr | Base | The GS <b>shall</b> supervise GS interfaces to external elements, up to the GOES-R demarcation as defined in the GS IRDs. | | GSFPS-<br>1500 | GS Ktr | Base | The GS <b>shall</b> supervise applications communications status between external elements and the GS. | | GSFPS-<br>1502 | GS Ktr | Base | The GS <b>shall</b> supervise network communications status between external elements and the GS. | | | | | Dogwigement | |----------------|-------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1503 | | | 5.5.2 Ground Segment Security Monitoring | | GSFPS-<br>1505 | GS Ktr | Base | The GS <b>shall</b> manage operational networks consistent with all security and access control requirements. | | GSFPS-<br>1509 | GS Ktr | Base | The GS <b>shall</b> alert operations personnel of security incidents. | | GSFPS-<br>1511 | GS Ktr | Base | The GS <b>shall</b> correlate data from GS specific host-based and network-based intrusion prevention and detection system and firewalls. | | GSFPS-<br>1514 | | | 6 MISSION MANAGEMENT REQUIREMENTS | | GSFPS-<br>1516 | | | 6.1 Overview | | GSFPS-<br>1518 | | | Section 6 specifies the Mission Management (MM) function of the GOES-R GS. MM comprises the hardware, software, and mission operations support functions required to safely and reliably control and communicate with the satellite, monitor satellite systems performance, and capture all raw instrument data necessary for production of mission data. | | GSFPS-<br>1520 | | | 6.2 Operational View | | GSFPS-<br>1522 | | | MM encompasses all operational functions of the spacecraft and instruments as follows: | | CCEDC | | | <ul> <li>a) Mission operations to include: console operations, offline engineering and trending, bus and instrument engineering telemetry and performance monitoring, anomaly detection and resolution, procedure development, spacecraft resource accounting, special operation.</li> <li>b) Spacecraft telemetry data storage for the life of the mission and remote access to telemetry.</li> <li>c) Mission planning and scheduling.</li> <li>d) Spacecraft navigation (orbit and attitude determination and maneuver planning).</li> <li>e) Space-Ground communications.</li> <li>f) Antennas.</li> <li>g) Uplink services and monitoring.</li> <li>h) Downlink services and monitoring.</li> <li>i) Raw instrument data pre-processing and temporary storage.</li> <li>j) Level 0 (L0) processing.</li> <li>k) Image Navigation and Registration (INR) operations.</li> <li>l) Routine instrument calibration and L1b product monitoring.</li> <li>m) Flight Software (FSW) management.</li> <li>n) Flight operations simulation</li> </ul> | | GSFPS-<br>1548 | | | 6.3 General Mission Management | | GSFPS-<br>1550 | GS Ktr | Base | The GS <b>shall</b> manage the GOES-R Satellite Series throughout the life of the mission. | | GSFPS-<br>2454 | GS Ktr | Base | The GS <b>shall</b> maintain the Satellite Command and Telemetry Databases for the life of the mission. | | GSFPS-<br>1552 | GS Ktr | Base | The GS <b>shall</b> perform satellite instrument calibration. | | GSFPS-<br>1554 | GS Ktr | Base | The GS <b>shall</b> perform mission planning and scheduling. | | | D. Furt | | | |----------------|-------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2455 | GS Ktr | Base | The GS <b>shall</b> collect performance measurements on MM including telemetry (TLM) limits, event messages, command (CMD) configurations, RF/IF signal quality, continuity and status. | | GSFPS-<br>2456 | GS Ktr | Base | The GS shall report on MM performance measurements. | | GSFPS-<br>2631 | GS Ktr | Base | The GS <b>shall</b> accommodate a minimum of 100 concurrent MM operator sessions, each capable of performing real-time commanding and telemetry monitoring, spacecraft operations, scheduling, and off-line telemetry analysis functions. | | GSFPS-<br>2632 | GS Ktr | Base | The GS MM software <b>shall</b> be capable of supporting a minimum of four separate GOES-R Series satellites. | | GSFPS-<br>2633 | GS Ktr | Base | The GS <b>shall</b> provide a configuration monitoring function to monitor the status and send configuration directives to all MM components and subsystems. | | GSFPS-<br>3026 | GS Ktr | Base | The GS <b>shall</b> display a new page, complete with data within 3 seconds of its selection by the operator. | | GSFPS-<br>3027 | GS Ktr | Base | The GS <b>shall</b> perform reassignment of a workstation configuration from one spacecraft to another within 30 seconds of an operator directive. | | GSFPS-<br>3028 | GS Ktr | Base | The GS <b>shall</b> provide continuity of Mission Management workstation displays and processing before/after an operator log-off/log-on for the purpose of gap free change of operators. | | GSFPS-<br>1558 | GS Ktr | Base | The GS <b>shall</b> display MM data on an operator-selectable periodic basis. | | GSFPS-<br>1560 | GS Ktr, ANT (CCR-01430) | Base | The GS shall capture logs of all operator inputs. | | GSFPS-<br>2458 | GS Ktr | Base | The GS <b>shall</b> store and have the capability to retrieve, display, and generate and export reports of all operator inputs for 90 days. | | GSFPS-<br>3087 | GS Ktr | Base | The GS <b>shall</b> provide the capability for operators to access the GS Satellite Telemetry and Command Databases from all GS locations. | | GSFPS-<br>3088 | GS Ktr | Base | The GS <b>shall</b> manage the configuration of the contents of the Satellite Telemetry and Command Databases. | | GSFPS-<br>3089 | GS Ktr | Base | The GS <b>shall</b> provide an XTCE-compliant ingest/export function/interface for the Satellite Telemetry and Command Databases. | | GSFPS-<br>3090 | GS Ktr | Base | The GS <b>shall</b> provide a validation function for the Satellite Telemetry and Command Databases. | | GSFPS-<br>3091 | GS Ktr | Base | The GS <b>shall</b> perform line-by-line syntax checking and display of all commands and ground directives. | | GSFPS-<br>3095 | GS Ktr | Base | The GS <b>shall</b> configuration control all mission products (e.g., schedules, spacecraft commands, command loads, and flight software) stored and created within the GS. | | GSFPS-<br>3096 | GS Ktr | Base | The GS <b>shall</b> import, process, and store command procedures developed externally using the GS scripting language logic statements and command blocks derived from the Satellite Telemetry and Command Database. | | GSFPS-<br>3138 | GS Ktr | Base | The GS <b>shall</b> manage the GOES-R Mission Operations Database (MODB). | | | | | | | Dov Effort | | | |-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Dev. Effort | Option | Requirement | | GS Ktr | Base | The GS <b>shall</b> provide the capability for operators to access the GOES-R MODB from all GS locations. | | GS Ktr | Base | The GS MODB <b>shall</b> be capable of being shared by all parties (operations and satellite/instrument teams) to maintain all satellite mission operations products. | | GS Ktr | Base | The GS <b>shall</b> provide a validation function for the GOES-R MODB. | | GS Ktr | Base | The GS <b>shall</b> provide an XTCE-compliant ingest/export function/interface for the GOES-R MODB. | | GS Ktr | Base | The MODB <b>shall</b> be delivered as a delimited ASCII file. | | GS Ktr | Base | The GS MODB <b>shall</b> conform to the GOES-R Flight Project Telemetry and Command Database Style Guidelines for command and telemetry mnemonic designations contained in the MODB. | | GS Ktr | Base | The MODB delivery <b>shall</b> include either a database schema defining tables and entries or an XML schema and tag definitions, as appropriate. | | | | The GS MODB will contain mission operations data items which may include: Commands, Telemetry, Packets, Conversions, Command APID Description, Database Version Name, Subsystem List, Real-Time Procedures, Instrument Tables, Instrument Symbols Of Interest, Instrument Action Codes, Instrument Onboard Scripts, Equations, Ground Data Points, Displays, Workspaces, Display Templates, Auto-Generated Displays, User, Workstation Permissions, Group Permissions, Spacecraft Onboard Processor Definitions, Spacecraft Memory Load Templates, EGSE Commands, EGSE Telemetry, EGSE Conversions, EGSE Auto-Gen Displays, EGSE Display Header Template, EGSE Test Sets, EGSE Subsystem List, Area Phase List. | | | | 6.4 Satellite Engineering Telemetry Monitoring | | GS Ktr | Base | The GS <b>shall</b> monitor and display satellite engineering telemetry data. | | GS Ktr | Base | The GS <b>shall</b> make engineering telemetry available for real time display, analysis, limit checking, and storage for the life of the mission. | | GS Ktr | Base | The GS <b>shall</b> maintain telemetry limit sets for application to engineering telemetry parameters. | | GS Ktr | Base | The GS <b>shall</b> identify all out of limit conditions detected in satellite engineering telemetry. | | GS Ktr | Base | The GS <b>shall</b> generate event messages to communicate the status of the satellite and elements of the MM. | | GS Ktr | Base | The GS <b>shall</b> display an emulation of the onboard command execution process for absolute time sequence (ATS) and relative time sequence (RTS) command loads. | | | | 6.5 Event Logs | | GS Ktr | Base | The GS <b>shall</b> capture event messages of satellite and mission management events. | | GS Ktr | Base | The GS <b>shall</b> selectively filter MM event messages based on operator designation for forwarding to EM. | | | GS Ktr | GS Ktr Base | | | | | DES-R/Code 417 Version 1.10 | |----------------|----------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2461 | GS Ktr | Base | The GS <b>shall</b> forward filtered event messages of satellite and mission management events to EM. | | GSFPS-<br>1584 | GS Ktr | Base | The GS <b>shall</b> display satellite originated event messages. | | GSFPS-<br>1586 | GS Ktr | Base | The GS <b>shall</b> generate an event history report on operator request. | | GSFPS-<br>1588 | GS Ktr | Base | The GS <b>shall</b> selectively filter event messages for display, based on operator input. | | GSFPS-<br>1590 | GS Ktr | Base | The GS <b>shall</b> maintain a database of operator-defined event types. | | GSFPS-<br>1592 | | | 6.6 Remote Access to Mission Management Data | | GSFPS-<br>1594 | GS Ktr | Base | The GS <b>shall</b> permit an operator to retrieve and display spacecraft and instrument engineering telemetry through a secure interface from remote locations. | | GSFPS-<br>1596 | GS Ktr | Base | The GS remote access function <b>shall</b> be configurable to provide other operational data that may not necessarily occur in the satellite engineering telemetry stream such as event and status messages and INR performance data. | | GSFPS-<br>1598 | GS Ktr | Base | The GS remote access function <b>shall</b> retrieve historical satellite telemetry from the GS mission-life storage. | | GSFPS-<br>1600 | GS Ktr | Base | The GS remote access function <b>shall</b> retrieve and display satellite telemetry as received by the MM element with no more than 5 second latency. | | GSFPS-<br>1602 | GS Ktr | Base | The GS <b>shall</b> forward engineering telemetry to a secure operator access point for purposes of remote access. | | GSFPS-<br>2768 | GS Ktr | Base | The GS <b>shall</b> use secure one-way links for spacecraft telemetry and command systems when connecting to public networks or to networks which have connections to public networks. | | GSFPS-<br>1604 | | | 6.7 Anomaly Response | | GSFPS-<br>2635 | All<br>(CCR-01430) | Base | The GS <b>shall</b> enable the operator to specify criteria for anomalies. | | GSFPS-<br>2737 | All<br>(CCR-01430) | Base | The GS <b>shall</b> enable the operator to create contingency procedures. | | GSFPS-<br>1606 | GS Ktr, GAS<br>(CCR-01430) | Base | The GS <b>shall</b> manage contingency operations procedures. | | GSFPS-<br>1608 | All (CCR-01430) | Base | The GS <b>shall</b> execute contingency operations procedures. | | GSFPS-<br>1610 | All<br>(CCR-01430) | Base | The GS <b>shall</b> correlate detected anomalies with an applicable contingency procedure for the operator to activate. | | GSFPS-<br>2951 | GS Ktr | Base | The GS <b>shall</b> store contingency operations procedures for the life of the mission. | | GSFPS-<br>1612 | GS Ktr | Base | The GS <b>shall</b> enable the reporting of anomaly investigation results. | | GSFPS-<br>1614 | GS Ktr | Base | The GS <b>shall</b> store anomaly investigation results for the life of the mission. | | | | | | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1616 | | | 6.8 Ground Directives | | GSFPS-<br>1618 | GS Ktr | Base | The GS <b>shall</b> produce ground directives that control elements within the GS. | | GSFPS-<br>1620 | GS Ktr | Base | The GS <b>shall</b> create and store ground directives for inter-site control of GS elements. | | GSFPS-<br>1622 | GS Ktr | Base | The GS shall execute ground directives. | | GSFPS-<br>1624 | GS Ktr | Base | The GS shall graphically display ground directive execution. | | GSFPS-<br>1626 | GS Ktr | Base | The GS shall display ground directives in text. | | GSFPS-<br>1628 | GS Ktr | Base | The GS <b>shall</b> display ground directives synchronized with satellite commands. | | GSFPS-<br>1630 | GS Ktr | Base | The GS <b>shall</b> capture and store logs of ground directives and execution for the life of the mission. | | GSFPS-<br>1632 | GS Ktr | Base | The GS <b>shall</b> include ground directives and responses in the satellite event log as directed by the operator. | | GSFPS-<br>3029 | GS Ktr | Base | The GS <b>shall</b> display to the operator a list of available telemetry paths for each satellite. | | GSFPS-<br>3030 | GS Ktr | Base | The GS <b>shall</b> allow operator designation of the telemetry path for the source of telemetry for each satellite configuration. | | GSFPS-<br>3031 | GS Ktr | Base | The GS <b>shall</b> display to the operator a list of available command paths to each satellite. | | GSFPS-<br>3032 | GS Ktr | Base | The GS <b>shall</b> allow operator designation of the command path for each satellite configuration. | | GSFPS-<br>1634 | | | 6.9 Engineering Telemetry | | GSFPS-<br>1636 | GS Ktr | Base | The GS <b>shall</b> receive engineering telemetry at the MM operations console within 0.5 seconds of ground receipt. | | GSFPS-<br>1638 | GS Ktr | Base | The GS <b>shall</b> capture and store all logs generated by the processing of telemetry data for the life of the mission. | | GSFPS-<br>1640 | GS Ktr | Base | The GS <b>shall</b> capture all out of limit telemetry conditions. | | GSFPS-<br>2465 | GS Ktr | Base | The GS <b>shall</b> store logs of all out of limit telemetry conditions for the life of the mission. | | GSFPS-<br>2466 | GS Ktr | Base | The GS <b>shall</b> have the capability to retrieve, display, export, store for the life of the mission, and print operator-selected spacecraft and instrument engineering telemetry, telemetry reports, and telemetry logs upon request of the operator. | | GSFPS-<br>1771 | GS Ktr | Base | The GS <b>shall</b> process engineering telemetry as received (including normal mode and dwell mode telemetry). | | GSFPS-<br>2640 | GS Ktr | Base | The GS <b>shall</b> have the capability to retrieve an echo of the full 4/32 kbps engineering data telemetry stream from the instrument raw data stream. | | GSFPS-<br>2641 | GS Ktr | Base | The GS <b>shall</b> forward engineering telemetry parameters retrieved from the instrument raw data stream to the normal MM telemetry process for display, retrieval, and storage for the life of the mission. | | | | | JES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1568 | GS Ktr | Base | The GS <b>shall</b> convert all satellite engineering telemetry data to engineering units. | | GSFPS-<br>1652 | GS Ktr | Base | The GS <b>shall</b> permit operator-selectable display of stored satellite engineering telemetry data in engineering units or raw counts. | | GSFPS-<br>1644 | | | 6.10 Engineering Analysis | | GSFPS-<br>1646 | GS Ktr | Base | The GS <b>shall</b> report spacecraft and instrument performance and trends based on collected engineering telemetry. | | GSFPS-<br>1648 | GS Ktr | Base | The GS <b>shall</b> generate spacecraft and instrument performance trend analyses using real-time and stored telemetry. | | GSFPS-<br>1656 | GS Ktr | Base | The GS <b>shall</b> have the ability to export data in a non-proprietary file format. | | GSFPS-<br>3033 | GS Ktr | Base | The GS <b>shall</b> trend satellite life-limited resources (e.g., component ontime, battery charge/discharge cycles, propellant remaining) for the life of the mission. | | GSFPS-<br>1658 | | | 6.11 Flight Software Maintenance | | GSFPS-<br>2467 | GS Ktr | Base | The GS <b>shall</b> manage access to spacecraft flight software. | | GSFPS-<br>1660 | GS Ktr | Base | The GS <b>shall</b> maintain knowledge of the current state of onboard satellite (spacecraft and instrument) memory contents. | | GSFPS-<br>1662 | GS Ktr | Base | The GS <b>shall</b> manage spacecraft flight software. | | GSFPS-<br>1664 | GS Ktr | Base | The GS <b>shall</b> manage instrument flight software. | | GSFPS-<br>1666 | GS Ktr | Base | The GS <b>shall</b> provide for operator-initiated memory dumps from satellite processors. | | GSFPS-<br>1668 | GS Ktr | Base | The GS <b>shall</b> process memory dumps from satellite processors for the purpose of memory verification. | | GSFPS-<br>1670 | GS Ktr | Base | The GS <b>shall</b> maintain a current copy of each flight software image. | | GSFPS-<br>1672 | GS Ktr | Base | The GS <b>shall</b> maintain current copies of all satellite tables. | | GSFPS-<br>1674 | GS Ktr | Base | The GS <b>shall</b> manage general satellite operations tables. | | GSFPS-<br>2636 | GS Ktr | Base | The GS <b>shall</b> allow the operator to retrieve and utilize all stored copies of satellite flight software. | | GSFPS-<br>2923 | GS Ktr | Base | The GS <b>shall</b> generate flight software loads for uplink to the satellite. | | GSFPS-<br>1676 | GS Ktr | Base | The GS <b>shall</b> verify flight software and table loads. | | GSFPS-<br>1678 | GS Ktr | Base | The GS <b>shall</b> import flight software patches from the Flight Software Development Environment (FSDE). | | GSFPS-<br>2770 | GS Ktr | Base | The GS <b>shall</b> maintain synchronization of the spacecraft clock. | | GSFPS-<br>1680 | | | 6.12 Satellite Simulator Interface | | GSFPS-<br>1683 | | | The Satellite Simulator will have an interface with the GS antenna subsystem at the IF switch. | | | D = (( ) | | LOTI/OUGHTI | |----------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2637 | GS Ktr | Base | The GS <b>shall</b> provide an interface between the Satellite Simulator and the MM telemetry and command subsystem at the NSOF, WCDAS, and RBU sites. | | GSFPS-<br>1685 | GS Ktr | Base | The GS <b>shall</b> interface with the satellite simulator via baseband data. | | GSFPS-<br>1687 | GS Ktr | Base | The GS <b>shall</b> send data to the satellite simulator that simulates the Ground Segment communications to the Space Segment. | | GSFPS-<br>1689 | GS Ktr | Base | The GS <b>shall</b> receive data from the satellite simulator that simulates the Space Segment to Ground Segment communications. | | GSFPS-<br>2468 | GS Ktr | Base | The GS <b>shall</b> interface with satellite simulators to support simulation of at least three spacecraft simultaneously. | | GSFPS-<br>2638 | GS Ktr | Base | The GS interface to the Satellite Simulator <b>shall</b> conform to the Spacecraft Simulator Design Document (GS-01). | | GSFPS-<br>1691 | | | 6.13 Image Navigation and Registration | | GSFPS-<br>1693 | | | The Government will provide algorithms from the GOES-R earth pointing instrument vendors to either resample to a geo-referenced fixed grid coordinate system, for Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM), or to provide geo-referenced information for INR processing. The Government will provide algorithms from the instrument vendors for the non-earth pointing instruments to geometrically locate to other coordinate systems. The ABI L1b algorithms are described in GOES-R Space Segment CDRL 80-1. | | GSFPS-<br>1695 | GS Ktr | Base | The GS <b>shall</b> receive, from the Government, geometric calibration databases developed by the instrument vendor. | | GSFPS-<br>1697 | GS Ktr | Base | The GS <b>shall</b> maintain geometric calibration databases. | | GSFPS-<br>1699 | GS Ktr | Base | The GS <b>shall</b> geo-locate Earth-referenced instrument observation data in geodetic latitude and longitude. | | GSFPS-<br>3034 | GS Ktr | Base | The GS <b>shall</b> locate Solar-referenced instrument observation data in the applicable reference frame. | | GSFPS-<br>3035 | GS Ktr | Base | The GS <b>shall</b> perform landmarking of L1b images for visible and ground-viewing IR optical channels. | | GSFPS-<br>3036 | GS Ktr | Base | The GS <b>shall</b> perform landmarking using a landmark database containing landmark locations and associated feature boundary data specific to operator designated sub-satellite locations. | | GSFPS-<br>1701 | | | 6.13.1 Image Navigation and Registration Monitoring and Performance | | GSFPS-<br>1703 | GS Ktr | Base | The GS <b>shall</b> monitor spacecraft instrument INR performance. | | GSFPS-<br>2471 | GS Ktr | Base | The GS <b>shall</b> autonomously monitor spacecraft instrument INR performance using predetermined landmarks from the landmark database. | | GSFPS-<br>1705 | GS Ktr | Base | The GS <b>shall</b> display graphical, textual, and event messages related to INR performance parameters. | | GSFPS-<br>1707 | GS Ktr | Base | The GS shall determine corrections to INR parameters. | | | | | Lony Gode 417 Version 1.10 | |----------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1709 | GS Ktr | Base | The GS <b>shall</b> report INR performance. | | GSFPS-<br>1711 | GS Ktr | Base | The GS <b>shall</b> store INR performance data and processing parameters. | | GSFPS-<br>2472 | GS Ktr | Base | The GS <b>shall</b> trend INR performance data for an operator-defined interval. | | GSFPS-<br>2245 | GS Ktr | Base | The GS <b>shall</b> monitor the performance of the GOES-R Series system with respect to the image radiometry, geometry and temporal registration. | | GSFPS-<br>3037 | GS Ktr | Base | The GS <b>shall</b> be capable of extracting and storing pre-defined landmark regions of geo-referenced instrument detector sample data (i.e., prior to a function such as resampling). | | GSFPS-<br>3038 | GS Ktr | Base | The GS <b>shall</b> perform landmark recognition and measurement, by operator request, from previously stored geo-referenced instrument detector sample data. | | GSFPS-<br>3134 | GS Ktr | Base | The GS <b>shall</b> monitor the performance characteristics of ABI, GLM and SUVI Image Navigation and Registration consistent with the respective instrument Performance and Operational Requirements Documents (PORDs). | | GSFPS-<br>3135 | GS Ktr | Base | The GS <b>shall</b> manage ABI, GLM and SUVI Image Navigation and Registration ground-computed parameters, orbital elements and associated data consistent with the performance requirements of the instruments as described in the respective PORDs. | | GSFPS-<br>3136 | GS Ktr | Base | The GS <b>shall</b> monitor the performance of the GOES-R Series system with respect to the image radiometry, geometry and temporal registration at a level of accuracy, precision, quantity, and frequency necessary to validate the instrument performance as described in their respective PORDs. | | GSFPS-<br>1713 | | | 6.14 GRB Product Monitoring | | GSFPS-<br>1715 | GS Ktr | Base | The GS <b>shall</b> display operator selectable data and imagery from the received GRB data. | | GSFPS-<br>1717 | GS Ktr | Base | The GS <b>shall</b> assess and report the quality of instrument radiometric performance. | | GSFPS-<br>2755 | GS Ktr | Base | The GS <b>shall</b> assess and report the quality of performance for all instruments. | | GSFPS-<br>2474 | GS Ktr | Base | The GS <b>shall</b> display imagery from the received GRB data selectable by source and band. | | GSFPS-<br>1723 | GS Ktr | Base | The GS <b>shall</b> assess and report the quality of the received GRB data. | | GSFPS-<br>2759 | GS Ktr | Base | The GS <b>shall</b> be capable of monitoring any data item contained within the GRB data stream. | | GSFPS-<br>2473 | GS Ktr | Base | The GS <b>shall</b> receive GRB data as relayed from the GOES R Series satellites. | | GSFPS-<br>1724 | | | 6.15 Command Operations | | GSFPS-<br>2475 | GS Ktr | Base | The GS <b>shall</b> process commands by satellite ID. | | GSFPS-<br>2924 | GS Ktr | Base | The GS <b>shall</b> generate commands for uplink to the satellite. | | | | | DES-R/Code 417 Version 1.10 | |----------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2476 | GS Ktr | Base | The GS <b>shall</b> authorize only one command console to command any one GOES-R Series satellite at a time. | | GSFPS-<br>2477 | GS Ktr | Base | The GS <b>shall</b> complete a switchover of any non-command mode operator position to command mode within one minute of operator initiation of the action to switch. | | GSFPS-<br>1730 | GS Ktr | Base | The GS <b>shall</b> generate real time commands. | | GSFPS-<br>1732 | GS Ktr | Base | The GS <b>shall</b> generate Relative Time command Sequences (RTS) for use in command loads. | | GSFPS-<br>2478 | GS Ktr | Base | The GS <b>shall</b> manage RTSs. | | GSFPS-<br>2479 | GS Ktr | Base | The GS <b>shall</b> provide the capability edit and validate RTSs. | | GSFPS-<br>1734 | GS Ktr | Base | The GS <b>shall</b> generate Absolute Time command Sequences (ATS) for use in command loads. | | GSFPS-<br>2480 | GS Ktr | Base | The GS <b>shall</b> be able to maintain at least fifty ATSs for each satellite. | | GSFPS-<br>2481 | GS Ktr | Base | The GS <b>shall</b> provide the capability for the operator to stop an ATS during execution. | | GSFPS-<br>2482 | GS Ktr | Base | The GS <b>shall</b> provide tools for the development, modification, and deletion of ATSs. | | GSFPS-<br>2483 | GS Ktr | Base | The GS <b>shall</b> be capable of nesting command procedures to at least six levels. | | GSFPS-<br>2732 | GS Ktr | Base | The GS <b>shall</b> be capable of restricting command authority to selected workstations. | | GSFPS-<br>2733 | GS Ktr | Base | The GS <b>shall</b> provide tools for verification and validation of ATSs. | | GSFPS-<br>3111 | GS Ktr | Base | The GS <b>shall</b> store ATSs and RTSs for the life of the mission. | | GSFPS-<br>2734 | GS Ktr | Base | The GS <b>shall</b> be capable of transmitting encrypted commands upon operator direction. | | GSFPS-<br>2484 | GS Ktr | Base | The GS <b>shall</b> provide a function to expand nested procedures within a parent procedure so that all steps taken are shown in the order to be executed in print and display. | | GSFPS-<br>1736 | GS Ktr | Base | The GS <b>shall</b> generate stored command loads with an execution time span consistent with the satellite capability. | | GSFPS-<br>1738 | GS Ktr | Base | The GS <b>shall</b> maintain in a database a selected subset of commands defined as "critical" commands. | | GSFPS-<br>3155 | GS Ktr | Base | The GS <b>shall</b> have the capability to exclude hazardous commands from being executed. | | GSFPS-<br>1740 | GS Ktr | Base | The GS <b>shall</b> confirm operator acknowledgement prior to execution of all critical commands. | | GSFPS-<br>1742 | GS Ktr | Base | The GS <b>shall</b> preclude inadvertent and unauthorized satellite commanding. | | GSFPS-<br>1744 | GS Ktr | Base | The GS <b>shall</b> perform database-defined prerequisite state checking based on telemetry before transmitting a real-time command. | | | onsible Organiz | | | |----------------|-----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1746 | GS Ktr | Base | The GS <b>shall</b> accommodate command generation functionality as defined in the GOES-R Spacecraft Functional and Performance Specification (P 417-R-PSPEC-0014) and Space Segment (SS) to Ground Located - Command, Control, and Communications Segment (GL-C3S) (P 417-R-IRD-0001) IRD. | | GSFPS-<br>1748 | GS Ktr | Base | The GS <b>shall</b> be capable of transmitting unencrypted commands upon operator direction. | | GSFPS-<br>1750 | GS Ktr | Base | The GS <b>shall</b> utilize a National Security Agency (NSA) or NIST certified encryption device compatible with the onboard decryptor to send commands to the satellite. | | GSFPS-<br>3039 | GS Ktr | Base | The GS <b>shall</b> be capable of updating (add, change, or delete) any single command in an active command schedule, including revalidation, in no more than 30 seconds. | | GSFPS-<br>3040 | GS Ktr | Base | The GS <b>shall</b> retransmit commands that have failed to load up to a specified number of retries. | | GSFPS-<br>3041 | GS Ktr | Base | The GS <b>shall</b> take specified action (e.g., sound alarm, issue warning message, halt schedule) after the specified number of command retries have been exhausted. | | GSFPS-<br>3042 | GS Ktr | Base | The GS <b>shall</b> provide the capability to enter commands from a keyboard at the IF interface to the antenna system. | | GSFPS-<br>3043 | GS Ktr | Base | The GS <b>shall</b> provide limited raw and formatted telemetry display at the IF interface to the antenna system. | | GSFPS-<br>3044 | GS Ktr | Base | The GS <b>shall</b> maintain a database of the path delays to the antenna aperture of the Ground Stations utilized for commanding each satellite. | | GSFPS-<br>3045 | GS Ktr | Base | The GS <b>shall</b> provide continuity of satellite commanding through change of command authority from one workstation/console to another. | | GSFPS-<br>1752 | | | 6.15.1 Command Verification | | GSFPS-<br>1754 | GS Ktr | Base | The GS <b>shall</b> verify by default all commands prior to being uplinked to the satellite. | | GSFPS-<br>1756 | GS Ktr | Base | The GS <b>shall</b> verify stored command and memory (table) loads. | | GSFPS-<br>1758 | GS Ktr | Base | The GS <b>shall</b> verify that all software, stored command, and table loads transmitted to the satellite have been properly stored on board. | | GSFPS-<br>1760 | GS Ktr | Base | The GS <b>shall</b> have the capability to compare and confirm all flight software, stored command and table loads transmitted to the satellite. | | GSFPS-<br>1762 | GS Ktr | Base | The GS <b>shall</b> verify from telemetry, command acceptance or rejection status of each command transmitted to the satellite. | | GSFPS-<br>1764 | GS Ktr | Base | The GS <b>shall</b> verify via available telemetry that a command transmitted to the satellite produces a change in state consistent with successful command execution. | | GSFPS-<br>1766 | GS Ktr | Base | The GS <b>shall</b> allow command verification to be disabled or enabled on an individual command basis. | | | | | | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2485 | | | 6.15.2 Ground Command Management | | GSFPS-<br>2486 | GS Ktr | Base | The GS <b>shall</b> provide command constraint checking consistent with the satellite telemetry and command database. | | GSFPS-<br>2487 | GS Ktr | Base | The GS shall provide for a two-step commanding mode. | | GSFPS-<br>2488 | GS Ktr | Base | The GS <b>shall</b> route all commands through the designated primary command path. | | GSFPS-<br>2489 | GS Ktr | Base | The GS <b>shall</b> enable the operator to select an Absolute Time Sequence schedule to be run on the ground or on board. | | GSFPS-<br>2490 | GS Ktr | Base | The GS <b>shall</b> enable the operator to switch from one schedule to another. | | GSFPS-<br>2491 | GS Ktr | Base | The GS <b>shall</b> enable the operator to modify a schedule on the ground, upload it, and switch to the modified schedule. | | GSFPS-<br>2736 | GS Ktr | Base | The GS <b>shall</b> transmit real time commands within 1 second of definition by the operator. | | GSFPS-<br>1767 | | | 6.16 Telemetry | | GSFPS-<br>1773 | GS Ktr | Base | The GS shall interpret the value and quality flag of a telemetry point. | | GSFPS-<br>1775 | GS Ktr | Base | The GS <b>shall</b> enable the operator to define and maintain in a database mission-critical parameter telemetry items (safety monitors). | | GSFPS-<br>1777 | GS Ktr | Base | The GS <b>shall</b> monitor operator-defined mission-critical parameter telemetry items (safety monitors). | | GSFPS-<br>1779 | GS Ktr | Base | The GS <b>shall</b> display operator-defined mission-critical parameter telemetry items (safety monitors). | | GSFPS-<br>1781 | GS Ktr | Base | The GS <b>shall</b> activate a distinct audible and visual alarm based on an operator-defined set of monitored mission-critical parameter telemetry items (safety monitors). | | GSFPS-<br>1783 | GS Ktr | Base | The GS <b>shall</b> receive and process high-fidelity simulated telemetry. | | GSFPS-<br>1785 | GS Ktr | Base | The GS <b>shall</b> perform context-dependent telemetry processing. | | GSFPS-<br>1787 | GS Ktr | Base | The GS <b>shall</b> perform data flagging for all telemetry parameters (including pseudo telemetry) when there has been no receipt of such telemetry for a period of time equivalent to an operator-specified multiple of the telemetry point's update rate. | | GSFPS-<br>1789 | GS Ktr | Base | The GS <b>shall</b> alarm telemetry values that violate predefined database values (limit sets) as received. | | GSFPS-<br>1791 | GS Ktr | Base | The GS <b>shall</b> allow adjustments by operators with the correct privileges for any telemetry limit value defined in the telemetry database, including pseudo telemetry. | | GSFPS-<br>1793 | GS Ktr | Base | The GS <b>shall</b> permit operator-initiated limit adjustments, without permanent change to the telemetry database. | | GSFPS-<br>1795 | GS Ktr | Base | The GS <b>shall</b> allow limit adjustments to be made in either raw or engineering units. | | GSFPS-<br>1797 | GS Ktr | Base | The GS <b>shall</b> allow an operator to display the name of the active limit set. | G417-R-FPS-0089 Version 1.10 | | | | ES-R/Code 417 Version 1.10 | |----------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1799 | GS Ktr | Base | The GS <b>shall</b> allow an operator to display the current limit values for any telemetry parameter. | | GSFPS-<br>1801 | GS Ktr | Base | The GS <b>shall</b> allow the operator to disable and enable alarm messages. | | GSFPS-<br>1803 | GS Ktr | Base | The GS <b>shall</b> indicate a change in state of bi-level telemetry parameters, as a feature of the limit set function. | | GSFPS-<br>1963 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor spacecraft telemetry to assess performance of the UPS including level of transponder power output and transponder state (off or on). | | GSFPS-<br>2009 | GS Ktr | Base | The GS <b>shall</b> refresh telemetry displays at a rate consistent with satellite telemetry refresh rates. | | GSFPS-<br>2642 | | | 6.16.1 Pseudo Telemetry | | GSFPS-<br>2643 | GS Ktr | Base | The GS <b>shall</b> generate derived "pseudo telemetry" parameters based on combined or single engineering telemetry data parameters processed through user-defined algorithms (including algebraic, trigonometric, and logical operators). | | GSFPS-<br>2644 | GS Ktr | Base | The GS <b>shall</b> process, display, and store for the life of the mission pseudo telemetry in the same manner as normal satellite telemetry. | | GSFPS-<br>2645 | GS Ktr | Base | The GS <b>shall</b> time-tag pseudo telemetry relative to the last received packet of the source telemetry parameter used in the algorithm. | | GSFPS-<br>2646 | GS Ktr | Base | The GS <b>shall</b> update pseudo telemetry parameters at a frequency equal to the lowest frequency source telemetry parameter used in the algorithm. | | GSFPS-<br>2647 | GS Ktr | Base | The GS <b>shall</b> provide an interface for operators to define pseudo telemetry algorithms. | | GSFPS-<br>2648 | GS Ktr | Base | The GS <b>shall</b> permit user-defined pseudo telemetry items to be saved and accessed for all real time telemetry processing. | | GSFPS-<br>2649 | GS Ktr | Base | The GS <b>shall</b> permit the ad-hoc definition of pseudo telemetry algorithms by an operator ("on-the-fly") under a user session that will be processed until that session is closed. | | GSFPS-<br>2011 | GS Ktr | Base | The GS <b>shall</b> have the capability to store at least 1000 pseudo-telemetry operator-defined algorithms as they are generated in real-time and near real-time processing. | | GSFPS-<br>2650 | GS Ktr | Base | The GS <b>shall</b> permit ad-hoc defined pseudo telemetry algorithms to be saved. | | GSFPS-<br>3046 | | | 6.16.2 Satellite State Monitoring | | GSFPS-<br>3047 | GS Ktr | Base | The GS <b>shall</b> maintain an image of the current onboard status of each discrete commandable telemetered parameter. | | GSFPS-<br>3048 | GS Ktr | Base | The GS <b>shall</b> compare the status of discrete commandable telemetry with the ground image to determine if an uncommanded change in state has occurred. | | GSFPS-<br>3049 | GS Ktr | Base | The GS <b>shall</b> flag and report any uncommanded change in discrete telemetry in comparison with the ground image. | | GSFPS-<br>3050 | GS Ktr | Base | The GS discrete telemetry ground image compare capability <b>shall</b> be configurable by operator directive. | | | Disible Organiza | | | |----------------|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1805 | | | 6.17 Mission Planning and Scheduling | | GSFPS-<br>1807 | GS Ktr | Base | The GS <b>shall</b> generate schedules of coordinated satellite operations, communications services, payload operations, and supporting functions for each in-flight satellite. | | GSFPS-<br>1809 | GS Ktr | Base | The GS <b>shall</b> provide mission operations data for planning and scheduling including mission configuration, maneuver planning, and satellite activity prioritization. | | GSFPS-<br>1811 | GS Ktr | Base | The GS <b>shall</b> plan and schedule satellite resources for routine mission operations. | | GSFPS-<br>1813 | GS Ktr | Base | The GS <b>shall</b> plan and schedule special operations such as station keeping maneuvers, east-west, north-south yaw flips, thruster flushing, engineering or science investigations outside normal operations. | | GSFPS-<br>1815 | GS Ktr | Base | The GS <b>shall</b> plan and schedule routine and special instrument calibration activities. | | GSFPS-<br>1817 | GS Ktr | Base | The GS <b>shall</b> plan and schedule significant events and satellite maintenance resources up to 12 months in advance. | | GSFPS-<br>1819 | GS Ktr | Base | The GS <b>shall</b> create command loads, memory (table) loads and command sequences to operate the satellite. | | GSFPS-<br>1821 | GS Ktr | Base | The GS <b>shall</b> create command loads with overlap periods, such that the currently executing command load can initiate the command load awaiting execution. | | GSFPS-<br>2495 | GS Ktr | Base | The GS schedule generation function <b>shall</b> provide schedule templates to permit building schedules for ground and stored command use. | | GSFPS-<br>2496 | GS Ktr | Base | The GS schedule generation function <b>shall</b> perform line-by-line syntax checking of command files for verification. | | GSFPS-<br>2497 | GS Ktr | Base | The GS <b>shall</b> provide a schedule execution and monitoring function which provides schedule shadowing for visual monitoring of onboard schedule command execution. | | GSFPS-<br>2651 | GS Ktr | Base | The GS <b>shall</b> maintain a minimum of 200 mission plans simultaneously. | | GSFPS-<br>2652 | GS Ktr | Base | The GS <b>shall</b> validate schedules. | | GSFPS-<br>1823 | GS Ktr | Base | The GS shall constraint check command loads. | | GSFPS-<br>1825 | GS Ktr | Base | The GS <b>shall</b> deconflict satellite maintenance schedules with operations. | | GSFPS-<br>1827 | GS Ktr | Base | The GS <b>shall</b> coordinate the storage of ATS and RTS command sequences on board the satellite. | | GSFPS-<br>1829 | GS Ktr | Base | The GS <b>shall</b> provide coordination of control from one sequence to another on board the satellite. | | GSFPS-<br>1831 | GS Ktr | Base | The GS <b>shall</b> execute the procedures and rules used to perform planning and scheduling of the satellite. | | GSFPS-<br>2760 | GS Ktr | Base | The GS <b>shall</b> generate and forward command schedules and schedule updates to the backup subsystem and confirm all transfers at the sending and receiving ends. | | | onsible Organiz | | | |----------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>3051 | GS Ktr | Base | The GS <b>shall</b> provide schedule templates to allow building on-demand ABI scan command schedules based on those used for Mesoscale scans. | | GSFPS-<br>3052 | GS Ktr | Base | The GS <b>shall</b> generate an ABI scan command schedule containing only the latitude and longitude coordinates of the center point of the requested ABI scene and the execution time. | | GSFPS-<br>3053 | GS Ktr | Base | The GS <b>shall</b> use existing ABI scene swath tables for upload to the satellite. | | GSFPS-<br>3054 | GS Ktr | Base | The GS <b>shall</b> generate new ABI scene swaths tables for upload to the satellite. | | GSFPS-<br>3055 | GS Ktr | Base | The GS <b>shall</b> perform constraint checks to ensure that all ABI scene scans follow predefined rules to meet instrument performance requirements. | | GSFPS-<br>1833 | | | 6.18 Space-Ground Functional Communications | | GSFPS-<br>1839 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the command uplink for the GOES-R series. | | GSFPS-<br>1841 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the Data Collection Platform Receive (DCPR) pilot uplink for the GOES-R series. | | GSFPS-<br>1843 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the Data Collection Command (DCPC) uplink for the GOES-R series. | | GSFPS-<br>1845 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the uplink for GRB for the GOES-R series. | | GSFPS-<br>2653 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the uplink for HRIT/EMWIN for the GOES-R series. (CCR-01457) | | GSFPS-<br>1849 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor real-time telemetry for the GOES-R series. | | GSFPS-<br>1851 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the DCPR downlink for the GOES-R series. | | GSFPS-<br>1853 | ANT<br>(CCR-01430) | | The GS <b>shall</b> monitor the instrument raw data downlink for the GOES-R series. | | GSFPS-<br>2498 | ANT<br>(CCR-01430) | | The GS <b>shall</b> make all monitored communication link information available to MM. (CCR01416) | | GSFPS-<br>1855 | GS Ktr | Base | The GS <b>shall</b> append a cyclical redundancy checking (CRC) integrity measure to instrument uploads consistent with the Space Segment (SS) to Ground Located - Command, Control, and Communications Segment (GL-C3S) (P 417-R-IRD-0001) IRD. | | GSFPS-<br>1857 | GS Ktr | Base | The GS <b>shall</b> assess, maintain and report space-ground communications status, including data quality summary for all received data. | | GSFPS-<br>1859 | GS Ktr | Base | The GS <b>shall</b> receive, process, and route all satellite data in real-time in accordance with Consultative Committee for Space Data System (CCSDS) data standards defined in the applicable documents. | | GSFPS-<br>2501 | ANT<br>(CCR-01430) | | The GS <b>shall</b> communicate with the Space Segment consistent with the Space Segment (SS) to Ground Located - Command, Control, and Communications Segment (GL-C3S) (P 417-R-IRD-0001) IRD. | | GSFPS-<br>2657 | GS Ktr | Base | The GS <b>shall</b> process all downlinks from a satellite concurrently. | | | | | ES-R/Code 417 Version 1.10 | |----------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>1863 | | | 6.19 Launch Segment Interface | | GSFPS-<br>1865 | GS Ktr | Base | The GS <b>shall</b> receive launch data from the Launch Segment (LS), including: launch time, time of first contact, vectors, and ephemeris, as described in LS vendor documentation. | | GSFPS-<br>1867 | GS Ktr | Base | The GS <b>shall</b> receive satellite data from the LS, while integrated at the launch site, as described in LS vendor documentation. | | GSFPS-<br>1869 | GS Ktr | Base | The GS <b>shall</b> command the satellite through the LS interface. | | GSFPS-<br>1875 | GS Ktr | Base | The GS shall send commands via the LS ground network. | | GSFPS-<br>1877 | GS Ktr | Base | The GS shall receive telemetry via the LS ground network. | | GSFPS-<br>1879 | GS Ktr | Base | The GS shall receive ranging from the LS ground network. | | GSFPS-<br>1881 | GS Ktr | Base | The GS <b>shall</b> send orbital element or other acquisition data to the LS ground network. | | GSFPS-<br>1871 | | | 6.20 Space Segment Interface | | GSFPS-<br>2499 | GS Ktr | Base | The GS <b>shall</b> receive engineering telemetry data from the satellite in the factory as described in the associated Flight Segment test plan and test procedure. | | GSFPS-<br>2500 | GS Ktr | Base | The GS <b>shall</b> send satellite commands / command loads to the satellite in the factory as described in the associated Flight Segment test plan and test procedure. | | GSFPS-<br>1883 | | | 6.20.1 High Rate Information Transmission / Emergency<br>Managers Weather Information Network Interface (CCR-01457) | | GSFPS-<br>1885 | ANT<br>(CCR-01430) | | The GS <b>shall</b> interface with the HRIT/EMWIN service in accordance with the Ground Segment (GS) to High Rate Information Transmission / Emergency Managers Weather Information Network (EMWIN) Interface Requirements Document (IRD) (P 417-R-IRD-0095). (CCR-01457) | | GSFPS-<br>2659 | ANT<br>(CCR-01430) | | The GS <b>shall</b> uplink HRIT/EMWIN signal as specified in the SS to HRIT/EMWIN IRD (P 417-R-IRD-0168). (CCR-01457) | | GSFPS-<br>1889 | | | 6.20.2 Data Collection System Interface | | GSFPS-<br>1891 | ANT<br>(CCR-01430) | | The GS <b>shall</b> interface with DCS in accordance with the Ground Segment (GS) to Data Collection System (DCS) Interface Requirements Document (IRD) (P 417-R-IRD-0094). | | GSFPS-<br>2952 | ANT<br>(CCR-01430) | | The GS shall uplink DCS data streams to the Satellite. | | GSFPS-<br>2670 | ANT<br>(CCR-01430) | | The GS at the WCDAS <b>shall</b> receive test messages from the DAPS at the WCDAS site in accordance with the GS to DCS IRD (P-417-R-IRD-0094). | | GSFPS-<br>2671 | ANT<br>(CCR-01430) | | The GS at the WCDAS <b>shall</b> transmit test messages, similar to Data Collection Platform Reports (DCPRs), in any DCPR channel to the Space Segment as specified in the DCPR's Certificate Standards in accordance with the DCS to SS IRD (417-R-IRD-0005). | | | To 5" | | | |--------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS- | ANT | | The GS at the WCDAS <b>shall</b> receive test messages, similar to DCPRs, | | 2672 | (CCR-01430) | | from the Space Segment in accordance with the SS to GS IRD (417-R- | | | (55115115) | | IRD-0005). | | | | | 11\D 0000j. | | GSFPS- | ANT | | The GS at the WCDAS site <b>shall</b> forward received test messages, similar | | 2673 | (CCR-01430) | | to DCPRs, to the DAPS at the WCDAS site. | | 2073 | (CCN-01430) | | to DCF NS, to the DAFS at the WCDAS site. | | GSFPS- | | | | | | | | 6.21 Antenna | | 1904 | | | | | GSFPS- | | | The GS antenna subsystem(s), including the RF and IF interfacing | | 1905 | | | equipment, will be provided as GFP to the contractor. | | | | | | | GSFPS- | GS Ktr | Base | The GS signal path connections (uplink and downlink) <b>shall</b> interface to | | 1906 | | | the antenna subsystem at the Government-furnished IF switch. | | | | | • | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> interface to the antenna subsystem control component to | | 1908 | | | send antenna control signals to the antenna subsystem. | | 1000 | | | de la comita del la comita del la comita de la comita de la comita del la comita de del co | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> interface to the antenna subsystem control component to | | 1910 | | | receive antenna subsystem status data. | | 1910 | | 1 | TOOGIVO AIREITIA SUDSYSIEITI SIAIUS UAIA. | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> monitor and report antenna equipment status, event and | | 1912 | 00 1111 | Dasc | alarm information. | | 1912 | | | alatti illiottiatioti. | | GSFPS- | ANT | | The GS <b>shall</b> make antenna equipment status, event and alarm | | | | | | | 2504 | (CCR-01430) | | information available to EM. | | GSFPS- | ANT | | The CS entennes chall self sheek | | | | | The GS antennas <b>shall</b> self-check. | | 1914 | (CCR-01430) | | | | GSFPS- | ANT | | The GS <b>shall</b> provide redundant L, S, and X - band downlink antenna | | 1916 | (CCR-01430) | | paths. | | | - | | pane. | | GSFPS- | ANT | | The GS antenna primary and redundant downlink paths <b>shall</b> be hot and | | 1918 | (CCR-01430) | | available as the operational downlink. | | 1010 | (00/(0/400) | | available as the operational downlink. | | GSFPS- | ANT | | The GS antenna(s) <b>shall</b> provide redundant antenna satellite uplink paths. | | 1920 | (CCR-01430) | | | | | | | The CC enterpress of an author of path (s) about he grant the color table | | GSFPS- | ANT | | The GS antenna(s) operational path(s) <b>shall</b> be remotely selectable | | 1922 | (CCR-01430) | | through GS control. | | 00500 | A N I T | | T. 00 | | GSFPS- | ANT | | The GS antennas <b>shall</b> program-track satellites. | | 1924 | (CCR-01430) | 1 | | | GSFPS- | ANT | | The GS antennas <b>shall</b> auto-track satellites. | | 2675 | (CCR-01430) | 1 | | | | | <del> </del> | The CC shall manifest transfer and partial automas assertional account | | GSFPS- | ANT | 1 | The GS <b>shall</b> monitor, report, and control antenna operational parameters. | | 1926 | (CCR-01430) | | | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> remotely monitor, report, and control antenna operational | | 2676 | | 1 | parameters. | | | | | • | | GSFPS- | ANT | 1 | The GS antenna subsystem <b>shall</b> perform ranging ground loop calibration | | 1928 | (CCR-01430) | 1 | while performing nominal operations. | | 1020 | (33/(01430) | <u> </u> | Timo portorning nominal operations. | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> be able to configure the tracking mode of the antenna. | | 2754 | | | | | | ANT | 1 | The CC entenne subsystems shall most the Antenne ellected Leters | | GSFPS- | ANT | 1 | The GS antenna subsystems <b>shall</b> meet the Antenna-allocated Latency | | 3056 | (CCR-01430) | 1 | requirements of Appendix C when the system is operationally available. | | | | 1 | (CCR-01291, CCR-01414) | | | | <del> </del> | , | | GSFPS- | | | 6.22 Uplink Services | | | | | 1 174 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1930 | | | | | 1930 | ANT | | - | | | ANT<br>(CCR-01430) | | The GS <b>shall</b> generate uplink stream for commanding. | | Dev. Elfort Option Requirement | GSFPS- ANT (CCR-01430) GSFPS- ANT The GS shall generate uplink stream GRB format products in real-time for rebroadcast. The GS shall generate uplink stream for Unique Payload Services. GSFPS- (CCR-01430) GSFPS- ANT The GS shall remotely monitor and display the individual RF/IF satellite uplink carriers immediately before the combining process. GSFPS- ANT The GS shall remotely monitor and display the composite RF/IF satellite uplink signal after the final stage of amplification. GSFPS- ANT (CCR-01430) GSFPS- | GSFPS- 1934 (CCR-01430) GSFPS- 1936 (CCR-01430) GSFPS- 1937 (CCR-01430) GSFPS- 1938 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the second process of the composite RF/IF sometime in the composite RF/IF sometime in the composite RF/IF sometime in the composite RF/IF sometime | -time for | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------| | GSFPS- ANT CCR-01430 The GS shall generate uplink stream for Unique Payload Services. | rebroadcast. | 1934 (CCR-01430) rebroadcast. | -time for | | SFPS- 1936 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 Uplink Radio Frequency Monitoring CCR-01430 Uplink Carriers immediately before the combining process. SFPS- 1938 CCR-01430 Uplink Carriers immediately before the combining process. CCR-01430 Uplink Signal after the final stage of amplification. The GS shall remotely monitor and display the composite RF/IF satellite uplink signal after the final stage of amplification. CCR-01430 CCR-01430 The GS shall monitor all uplink paths simultaneously. CCR-01430 CCR-01430 CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor downlinks from a point at the IF switch. CCR-01430 CCR-01430 The GS shall remotely monitor downlinks from a point at the IF switch. CCR-01430 CCR-01430 The GS shall remotely monitor the GRB space Segment as specified in the Space Segment (SS) to GCES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). CCR-01430 The GS shall monitor the HRIT/EMWIN downlink performance for link quality including the received signal power and the bit error rate. CCR-01457 The GS shall remotely monitor the HRIT/EMWIN downlink performance for link quality including the received signal power and the bit error rate. CCR-01457 The GS shall remotely processed through the pre-processing telementry Transfer Frames are uncorrupted. GS Ktr | GSFPS- 1936 (CCR-01430) GSFPS- 1937 (CCR-01430) GSFPS- 1938 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1941 (CCR-01430) GSFPS- 1942 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 1951 (CCR-01430) GSFPS- 1952 (CCR-01430) GSFPS- 1953 (CCR-01430) GSFPS- 1954 (CCR-01430) GSFPS- 1955 (GS Ktr 1956 (GSFPS- 1958 (GS Ktr | GSFPS- 1936 (CCR-01430) GSFPS- 1937 6.22.1 Uplink Radio Frequency Monitoring GSFPS- 1938 (CCR-01430) GSFPS- 1938 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1944 7.22.2 Downlink Radio Frequency Monitoring GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display the composite RF/IF samplification. The GS shall monitor all uplink paths simultaneously. 6.22.2 Downlink Radio Frequency Monitoring The GS shall remotely monitor and display all RF/IF satellite down for the GS shall remotely monitor and display all RF/IF satellite down for the GS shall remotely monitor downlinks from a point at the IF swall for the GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00) (CCR01286) | | | SFPS- 1936 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 CCR-01430 Uplink Radio Frequency Monitoring CCR-01430 Uplink Carriers immediately before the combining process. SFPS- 1938 CCR-01430 Uplink Carriers immediately before the combining process. CCR-01430 Uplink Signal after the final stage of amplification. The GS shall remotely monitor and display the composite RF/IF satellite uplink signal after the final stage of amplification. CCR-01430 CCR-01430 The GS shall monitor all uplink paths simultaneously. CCR-01430 CCR-01430 CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. CCR-01430 The GS shall remotely monitor downlinks from a point at the IF switch. CCR-01430 CCR-01430 The GS shall remotely monitor downlinks from a point at the IF switch. CCR-01430 CCR-01430 The GS shall remotely monitor the GRB space Segment as specified in the Space Segment (SS) to GCES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). CCR-01430 The GS shall monitor the HRIT/EMWIN downlink performance for link quality including the received signal power and the bit error rate. CCR-01457 The GS shall remotely monitor the HRIT/EMWIN downlink performance for link quality including the received signal power and the bit error rate. CCR-01457 The GS shall remotely processed through the pre-processing telementry Transfer Frames are uncorrupted. GS Ktr | GSFPS- 1936 (CCR-01430) GSFPS- 1937 (CCR-01430) GSFPS- 1938 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1941 (CCR-01430) GSFPS- 1942 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 1951 (CCR-01430) GSFPS- 1952 (CCR-01430) GSFPS- 1953 (CCR-01430) GSFPS- 1954 (CCR-01430) GSFPS- 1955 (GS Ktr 1956 (GSFPS- 1958 (GS Ktr | GSFPS- 1936 (CCR-01430) GSFPS- 1937 6.22.1 Uplink Radio Frequency Monitoring GSFPS- 1938 (CCR-01430) GSFPS- 1938 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1944 6.32.2 Downlink Radio Frequency Monitoring GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display the composite RF/IF satellite down and | | | 1936 (CCR-01430) | GSFPS- ANT CCR-01430 GSFPS- ANT The GS shall remotely monitor and display all RF/IF satellite downlinks. | 1936 (CCR-01430) GSFPS-1937 6.22.1 Uplink Radio Frequency Monitoring | | | GSFPS- ANT CCR-01430 The GS shall remotely monitor and display the individual RF/IF satellite uplink carriers immediately before the combining process. GSFPS- ANT CCR-01430 Uplink signal after the final stage of amplification. | GSFPS- ANT The GS shall remotely monitor and display the individual RF/IF satellite uplink carriers immediately before the combining process. | GSFPS- 1937 GSFPS- 1938 GSFPS- 1938 GCR-01430) GSFPS- 1939 GSFPS- 1940 GSFPS- 1944 GSFPS- 1944 GSFPS- 1945 GSFPS- 1946 GSFPS- 1949 1940 | | | GSFPS- ANT (CCR-01430) CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- GSFPS- ANT (CCR-01430) GSFPS- GSFPS- ANT (CCR-01430) GSFPS- GSFPS- ANT (CCR-01430) GSFPS- GSFPS- GSFPS- CCR-01430) GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFRS- GSF | 6.22.1 Uplink Radio Frequency Monitoring GSFPS- ANT 1938 (CCR-01430) GSFPS- ANT 1939 (CCR-01430) GSFPS- ANT 1940 1946 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1957 (CCR-01430) GSFPS- ANT 1958 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1950 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1952 (CCR-01430) GSFPS- ANT 1955 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1957 (CCR-01430) GSFPS- ANT 1958 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1950 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1952 (CCR-01430) GSFPS- ANT 1953 (CCR-01430) GSFPS- GS Ktr 1958 (CCR-01430) GSFPS- GS Ktr 1958 (CCR-01430) GSFPS- GS Ktr 2505 (CCR-01430) GSFPS- GS Ktr 2506 (CCR-01430) GSFPS- GS Ktr 2507 (CCR-01430) GSFPS- GS Ktr 2508 (CCR-01430) GSFPS- GS Ktr 2509 (CCR-01430) GSFPS- GS Ktr 2500 | GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- 1939 GSFPS- 1944 GSFPS- 1944 GSFPS- 1945 GSFPS- 1945 GSFPS- 1946 GSFPS- ANT (CCR-01430) GSFPS- 1946 GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- 1945 GSFPS- 1946 GSFPS- ANT (CCR-01430) AN | | | GSFPS- ANT (CCR-01430) CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- GSFPS- ANT (CCR-01430) GSFPS- GSFPS- ANT (CCR-01430) GSFPS- GSFPS- ANT (CCR-01430) GSFPS- GSFPS- GSFPS- CCR-01430) GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFPS- GSFRS- GSF | 6.22.1 Uplink Radio Frequency Monitoring GSFPS- ANT 1938 (CCR-01430) GSFPS- ANT 1939 (CCR-01430) GSFPS- ANT 1940 1946 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1957 (CCR-01430) GSFPS- ANT 1958 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1950 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1952 (CCR-01430) GSFPS- ANT 1955 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1957 (CCR-01430) GSFPS- ANT 1958 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1959 (CCR-01430) GSFPS- ANT 1950 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1952 (CCR-01430) GSFPS- ANT 1953 (CCR-01430) GSFPS- GS Ktr 1958 (CCR-01430) GSFPS- GS Ktr 1958 (CCR-01430) GSFPS- GS Ktr 2505 (CCR-01430) GSFPS- GS Ktr 2506 (CCR-01430) GSFPS- GS Ktr 2507 (CCR-01430) GSFPS- GS Ktr 2508 (CCR-01430) GSFPS- GS Ktr 2509 (CCR-01430) GSFPS- GS Ktr 2500 | GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- 1939 GSFPS- 1944 GSFPS- 1944 GSFPS- 1945 GSFPS- 1945 GSFPS- 1946 GSFPS- ANT (CCR-01430) GSFPS- 1946 GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- 1945 GSFPS- 1946 GSFPS- ANT (CCR-01430) AN | | | ANT (CCR-01430) The GS shall remotely monitor and display the individual RF/IF satellite uplink carriers immediately before the combining process. | GSFPS- 1938 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1939 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1941 (CCR-01430) GSFPS- 1944 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1941 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 (CCR-01430) GSFPS- 1941 (CCR-01430) GSFPS- 1942 (CCR-01430) GSFPS- 1943 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1947 (CCR-01430) GSFPS- 1948 (CCR-01430) GSFPS- 1949 (CCR-01430) GSFPS- 1940 (CCR-0143 | GSFPS- 1938 (CCR-01430) The GS shall remotely monitor and display the individual RF/IF satuplink carriers immediately before the combining process. GSFPS- 1939 (CCR-01430) The GS shall remotely monitor and display the composite RF/IF satuplink signal after the final stage of amplification. GSFPS- 1940 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display all RF/IF satellite down applied to the IF swarp (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF swarp (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | 1938 (CCR-01430) Uplink carriers immediately before the combining process. | Uplink carriers immediately before the combining process. | 1938 (CCR-01430) uplink carriers immediately before the combining process. GSFPS-1939 (CCR-01430) The GS shall remotely monitor and display the composite RF/IF suplink signal after the final stage of amplification. GSFPS-1940 (CCR-01430) The GS shall monitor all uplink paths simultaneously. GSFPS-1944 6 (CCR-01430) The GS shall remotely monitor and display all RF/IF satellite down (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF swall (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | tallita | | The GS shall remotely monitor and display the composite RF/IF satellite uplink signal after the final stage of amplification. SFPS- ANT | GSFPS- ANT | GSFPS- 1939 (CCR-01430) The GS shall remotely monitor and display the composite RF/IF s uplink signal after the final stage of amplification. GSFPS- 1940 (CCR-01430) The GS shall monitor all uplink paths simultaneously. GSFPS- 1944 6.22.2 Downlink Radio Frequency Monitoring The GS shall remotely monitor and display all RF/IF satellite down (CCR-01430) GSFPS- 1946 (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | teilite | | 1939 (CCR-01430) Uplink signal after the final stage of amplification. | Uplink signal after the final stage of amplification. | uplink signal after the final stage of amplification. GSFPS- 1940 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display all RF/IF satellite down a point at the IF sw. 1949 (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw. 1949 (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286)) | | | 1939 (CCR-01430) Uplink signal after the final stage of amplification. | Uplink signal after the final stage of amplification. | uplink signal after the final stage of amplification. GSFPS- 1940 (CCR-01430) GSFPS- 1944 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display all RF/IF satellite down a point at the IF sw. 1949 (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw. 1949 (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286)) | 04011:40 | | The GS shall monitor all uplink paths simultaneously. | GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- GS Ktr Base The GS shall monitor the GRB downlink performance for link quality including the received signal power and the bit error rate. (CCR-01457) GSFPS- GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. The GS shall receive engineering telemetry Transfer Frames are uncorrupted. GSFPS- GS Ktr Base The GS shall flag engineering telemetry Transfer Frames are uncorrupted. GSFPS- GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance. CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing status, and error correction performance in a daily preprocessing status, and error correction performance in a daily preprocessing performance performance in a daily preprocessing performance in grile. | GSFPS- 1940 (CCR-01430) GSFPS- 1944 (SFPS- 1945 (CCR-01430) GSFPS- 1945 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1946 (CCR-01430) GSFPS- 1949 (CCR-01430) The GS shall remotely monitor and display all RF/IF satellite down a point at the IF sw. 1949 (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw. 1949 (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286)) | atenite | | GSFPS- SFPS- SFPS- GS Ktr Base GSFPS- GSFPS | 1940 (CCR-01430) | GSFPS- 1944 GSFPS- 1945 GSFPS- 1946 GSFPS- 1946 GSFPS- 1946 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1946 GSFPS- 1949 The GS shall remotely monitor downlinks from a point at the IF swarp of the space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | GSFPS- SFPS- SFPS- GS Ktr Base GSFPS- GSFPS | 1940 (CCR-01430) | GSFPS- 1944 GSFPS- 1945 GSFPS- 1946 GSFPS- 1946 GSFPS- 1946 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1946 GSFPS- 1949 The GS shall remotely monitor downlinks from a point at the IF swarp of the space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | GSFPS-1944 G.22.2 Downlink Radio Frequency Monitoring | GSFPS- ANT The GS shall remotely monitor and display all RF/IF satellite downlinks. | GSFPS- 1944 GSFPS- 1945 GSFPS- 1946 GSFPS- 1946 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1949 GSFPS- 1946 GSFPS- 1949 GSFPS | | | 1944 | 1944 6.22.2 Downlink Radio Frequency Monitoring | GSFPS- ANT (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | The GS shall remotely monitor and display all RF/IF satellite downlinks. | The GS shall remotely monitor and display all RF/IF satellite downlinks. GSFPS- ANT (CCR-01430) GS Ktr Base The GS shall monitor the HRITFLMWIN downlink performance for link quality including the received signal power and the bit error rate. (CCR-01457) GSFPS- GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- GS Ktr Base The GS shall receive engineering telemetry Transfer Frames are uncorrupted. GSFPS- GS Ktr Base The GS shall flag engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr Base The GS shall record the quality and quantity of the engineering performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance of file. GSFPS- GS Ktr Base The GS shall sllow the operator to retrieve, display, export and print all | GSFPS- ANT (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | GSFPS-1946 CCR-01430 The GS shall remotely monitor and display all RF/IF satellite downlinks. (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF switch. (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) | Composition | GSFPS- ANT (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF sw specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | 1945 (CCR-01430) The GS shall remotely monitor downlinks from a point at the IF switch. | 1945 (CCR-01430) GSFPS- ANT 1949 (CCR-01430) GSFPS- ANT 1949 (CCR-01430) GSFPS- ANT 1949 (CCR-01430) GSFPS- ANT 1949 (CCR-01430) GSFPS- ANT 1951 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- ANT 1956 (CCR-01430) GSFPS- GS Ktr 1958 Base The GS shall received signal power and the bit error rate. GSFPS- GS Ktr 1958 Base The GS shall received engineering telemetry Transfer Frames are uncorrupted. GSFPS- GS Ktr 1958 Base The GS shall flag engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr 1958 Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including spreprocessing performance. CCSDS Transfer Frame processing performance. GSFPS- GS Ktr 1958 Base The GS shall received engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr 1950 Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- GS Ktr 1950 Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. The GS shall record the quality and quantity of the engineering telemetry processing function, including synchronization performance. CCSDS Transfer Frame processing function, including synchronization performance. CCSDS Transfer Frame processing function, including synchronization performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | 1945 (CCR-01430) GSFPS- ANT The GS <b>shall</b> remotely monitor downlinks from a point at the IF sw 1946 (CCR-01430) GSFPS- ANT The GS <b>shall</b> receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | links | | GSFPS-1946 CCR-01430 The GS shall remotely monitor downlinks from a point at the IF switch. | The GS shall remotely monitor downlinks from a point at the IF switch. | GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) The GS <b>shall</b> remotely monitor downlinks from a point at the IF swarp (CCR-01430) The GS <b>shall</b> receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | iiii iito. | | 1946 (CCR-01430) CCR-01430 The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) The GS shall monitor the GRB downlink performance for link quality including the received signal power and the bit error rate. | 1946 (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) | 1946 (CCR-01430) GSFPS- ANT 1949 (CCR-01430) The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | SSFPS- 1949 | The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Reteroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) GSFPS- | GSFPS- ANT (CCR-01430) The GS <b>shall</b> receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | ıtch. | | SSFPS- 1949 | The GS shall receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Reteroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) GSFPS- | GSFPS- ANT (CCR-01430) The GS <b>shall</b> receive the GRB signal from the Space Segment as specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | specified in the Space Segment (SS) to GOES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- ANT (CCR-01430) GSFPS- Base GSFPS- GS Ktr Base GSFPS- GS Ktr Base The GS shall receive engineering telemetry Transfer Frames are uncorrupted. GSFPS- GS Ktr Base The GS shall flag engineering telemetry at a rate to keep pace with the receive for Transfer Frames over the space to ground link. GSFPS- GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receive of Transfer Frames over the space to ground link. GSFPS- GS Ktr Base The GS shall pre-process engineering telemetry of the engineering telemetry processed through the pre-processing function, including synchronization performance. GSFPS- GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processing status, and error correction performance in a daily preprocessing status, and error correction performance in a daily preprocessing performance log file. | Specified in the Space Segment (SS) to GOES Rebroadcast (GRB) Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) GSFPS- | 1949 (CCR-01430) specified in the Space Segment (SS) to GOES Rebroadcast (GRE Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) GSFPS- ANT The GS shall monitor the GRB downlink performance for link quality including the received signal power and the bit error rate. ANT (CCR-01430) The GS shall monitor the HRIT/EMWIN downlink performance for link quality including the received signal power and the bit error rate. (CCR-01457) GSFPS- 1968 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing preprocess | Service Interface Requirements Document (IRD) (P 417-R-IRD-0002). (CCR01286) GSFPS- ANT | Service Interface Requirements Document (IRD) (P 417-R-IRD-00 (CCR01286) | | | GSFPS- 1951 CCR-01430 The GS shall monitor the GRB downlink performance for link quality including the received signal power and the bit error rate. | GSFPS- 1951 (CCR-01430) GSFPS- 1956 (CCR-01430) GSFPS- 1956 (CCR-01430) GSFPS- 1956 (CCR-01430) GSFPS- 1956 (CCR-01430) GSFPS- 1958 GS Ktr GSFPS- 1968 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 1968 GS Ktr GSFPS- 1968 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 1968 GS Ktr GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 1969 GS Ktr GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 1968 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance. GSFPS- 2509 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processing tel | (CCR01286) | | | The GS shall monitor the GRB downlink performance for link quality including the received signal power and the bit error rate. | The GS shall monitor the GRB downlink performance for link quality including the received signal power and the bit error rate. GSFPS- | | 02). | | Including the received signal power and the bit error rate. | Including the received signal power and the bit error rate. | COERC ANT | | | Including the received signal power and the bit error rate. | Including the received signal power and the bit error rate. | | ·4 | | GSFPS- 1956 GSFPS- 1956 GSFPS- 1968 GSFPS- 1968 GSFPS- 2505 GS Ktr Base The GS shall monitor the HRIT/EMWIN downlink performance for link quality including the received signal power and the bit error rate. (CCR- 01457) 6.23 Telemetry Downlink Receive 6.25 Telemetry Downlink Receive GSFPS- 2505 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 1956 GSFPS- 1956 GSFPS- 1968 GS Ktr Base GSFPS- 1968 Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 1968 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance. GSFPS- 1968 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | ity | | GSFPS-1968 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing status, and error correction performance. GSFPS-2509 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processing status, and error correction performance. GSFPS-2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processing status, and error correction performance in a daily preprocessing status, and error correction performance in a daily preprocessing performance log file. | quality including the received signal power and the bit error rate. (CCR-01457) GSFPS-1968 GS Ktr | 1951 (CCR-01430) including the received signal power and the bit error rate. | | | GSFPS-1968 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing status, and error correction performance. GSFPS-2509 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processing status, and error correction performance. GSFPS-2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processing status, and error correction performance in a daily preprocessing status, and error correction performance in a daily preprocessing performance log file. | quality including the received signal power and the bit error rate. (CCR-01457) GSFPS-1968 GS Ktr | | | | GSFPS- 1968 GSFPS- 1968 GSFPS- 2505 GS Ktr GSFPS- 2506 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 1968 GS Ktr 1968 Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 1968 GS Ktr 1968 Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 1968 GS Ktr 1968 Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 1969 GS Ktr 1969 Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | | | GSFPS- 1968 GSFPS- 1968 GSFPS- 2505 GS Ktr GSFPS- 2506 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 1968 GS Ktr 1968 Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 1968 GS Ktr 1968 Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 1968 GS Ktr 1968 Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 1969 GS Ktr 1969 Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | 1956 (CCR-01430) quality including the received signal power and the bit error rate. | CCR- | | GSFPS- 1968 GSFPS- 1968 GSFPS- 2505 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS-1968 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS-1966 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS-1966 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS-1966 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-1966 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing status, and error correction performance. GSFPS-1966 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS-1968 GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | 01457) | | | GSFPS- 2505 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 1968 GSFPS- GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. | | | | GSFPS- 2505 GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- GS Ktr Base The GS shall receive engineering telemetry from the satellite in the form of CCSDS Transfer Frames. GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSFPS- 6.23 Telemetry Downlink Receive | | | GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2505 of CCSDS Transfer Frames. GSFPS-2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS-2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS-4 GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | 1968 0.25 Telemeny Downlink Receive | | | GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2505 of CCSDS Transfer Frames. GSFPS-2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS-2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance, CCSDS Transfer Frame processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS-4 GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSEPS- GS Ktr Base The GS shall receive engineering telemetry from the satellite in the | e form | | GSFPS- 2506 GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2506 GS Ktr GS Ktr Base The GS shall verify that received engineering telemetry Transfer Frames are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | 5 101111 | | are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | are uncorrupted. GSFPS- GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | 2005 Of CCSDS Transfer Frames. | | | are uncorrupted. GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | are uncorrupted. GSFPS- GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSEPS- GS Ktr Base The GS shall verify that received engineering telemetry Transfer F | rames | | GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2507 GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determined to be corrupted. GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | , , , , , , , , , , , , , , , , , , , , | Tarries | | Descripted. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS-2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | Descripted. GSFPS-GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS-GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS-GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | are uncorrupted. | | | Descripted. GSFPS-2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS-2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | Descripted. GSFPS-GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS-GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS-GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS-GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSEPS- GS Ktr Base The GS shall flag engineering telemetry Transfer Frames determine | ned to | | GSFPS- 2508 GS Ktr Base The GS <b>shall</b> pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS <b>shall</b> record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2508 GS Ktr Base The GS shall pre-process engineering telemetry at a rate to keep pace with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | 154 10 | | with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2508 with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | De corrupted. | | | with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2508 with the receipt of Transfer Frames over the space to ground link. GSFPS- 2509 GS Ktr Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSEPS- GS Ktr. Rase The GS shall pre-process engineering telemetry at a rate to keep | nace | | GSFPS- 2509 Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2509 Base The GS shall record the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | pace | | 2509 processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2509 processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | with the receipt of Transfer Frames over the space to ground link. | | | 2509 processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2509 processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSEDS GS Ktr. Base The GS chall record the quality and quantity of the engineering to | omotry | | performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | performance, CCSDS Transfer Frame processing status, and error correction performance. GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | | | GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | | | GSFPS- 2510 Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2510 GS Ktr Base The GS shall store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | r | | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2510 engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | | | | engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2510 engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS shall allow the operator to retrieve, display, export and print all | GSFPS- GS Ktr Base The GS shall store for the life of the mission the quality and quant | ity of the | | including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | processing status, and error correction performance in a daily preprocessing performance log file. | processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | , | | preprocessing performance log file. | preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | | GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | preprocessing performance log file. | | | GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | 00FD0 00 I/(r Door The 00 shall " " " " " " " " " " " " " " " " " " | | | | | | . 1 - 11 | | 3109 stored performance logs. | 3109 stored performance logs. | 3109 stored performance logs. | nt all | | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | GSFPS- 2509 Base The GS <b>shall</b> record the quality and quantity of the engineering teleprocessed through the pre-processing function, including synchror performance, CCSDS Transfer Frame processing status, and erro | nization | | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | l . | | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | GSFPS- 2510 Base The GS <b>shall</b> store for the life of the mission the quality and quantity of the engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | correction performance. | | | engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2510 engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | 2510 engineering telemetry processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | GSFPS- GS Ktr Base The GS shall store for the life of the mission the quality and quant | ity of the | | including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | 2510 engineering telemetry processed through the pre-processing funct | ion. | | processing status, and error correction performance in a daily preprocessing performance log file. | processing status, and error correction performance in a daily preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | preprocessing performance log file. | preprocessing performance log file. GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | processing status, and error correction performance in a daily | | | | GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | | | GSFPS- GS Ktr Base The GS <b>shall</b> allow the operator to retrieve, display, export and print all | | proprocessing performance log line. | | | 23. 13 23.11. 24.00 1110 00 chair and the operator to retrieve, display, expert and print an | | GSEPS- GS Ktr Base The GS shall allow the operator to retrieve display export and pri | | | 3100 stored performance logs | 3109 stored performance logs | | nt all | | Stored performance logs. | stored performance logs. | Stored performance logs. | nt all | | | | | nt all | | | | | ES-R/Code 417 Version 1.10 | | |----------------|-------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | ID | Dev. Effort | Option | Requirement | | | GSFPS-<br>2511 | GS Ktr | Base | The GS <b>shall</b> monitor the ingest of the engineering telemetry data transfer frames to include the number of Transfer Frames received in a 5 minute period, number of fill packets, and number of Transfer Frames determined to be corrupted. | | | GSFPS-<br>2512 | GS Ktr | Base | The GS <b>shall</b> store all received CCSDS engineering telemetry Transfer Frames in a 5-day revolving temporary storage to support anomaly resolution. | | | GSFPS-<br>2513 | GS Ktr | Base | The GS <b>shall</b> make engineering telemetry pre-processing status information available to EM. | | | GSFPS-<br>1970 | GS Ktr | Base | The GS <b>shall</b> receive and pre-process telemetry from the satellite. | | | GSFPS-<br>1972 | GS Ktr | Base | The GS <b>shall</b> quality-check telemetry according to error detection decoding. | | | GSFPS-<br>2514 | GS Ktr | Base | The GS <b>shall</b> sort housekeeping data by application ID and by virtual channel. | | | GSFPS-<br>1974 | GS Ktr | Base | The GS shall flag telemetry errors. | | | GSFPS-<br>3057 | | | 6.23.1 Telemetry Monitoring | | | GSFPS-<br>3058 | GS Ktr | Base | The GS <b>shall</b> implement a ground programmable telemetry monitoring function (TMON) compliant with GOES-R Spacecraft Functional and Performance Specification (P 417-R-PSPEC-0014). | | | GSFPS-<br>3059 | GS Ktr | Base | The GS <b>shall</b> apply corrective actions through the TMON function base on rules stored in the spacecraft flight computer's memory. | | | GSFPS-<br>3060 | GS Ktr | Base | The GS <b>shall</b> monitor and take action on at least 2048 telemetry points through the TMON function. | | | GSFPS-<br>3061 | GS Ktr | Base | The GS <b>shall</b> flag red limits through the TMON function based on action rules and red limits contained in a table residing in the flight computer's memory. | | | GSFPS-<br>1976 | | | 6.24 Raw Instrument Data Pre-processing | | | GSFPS-<br>1978 | GS Ktr | Base | The GS <b>shall</b> receive raw instrument data from the satellite in the form of CCSDS Transfer Frames. | | | GSFPS-<br>2521 | GS Ktr | Base | The GS <b>shall</b> store all received CCSDS raw instrument data Transfer Frames in a 5-day revolving temporary storage to support anomaly resolution. | | | GSFPS-<br>1980 | GS Ktr | Base | The GS <b>shall</b> verify that received raw instrument data Transfer Frames are uncorrupted. | | | GSFPS-<br>2515 | GS Ktr | Base | The GS <b>shall</b> flag raw instrument data Transfer Frames determined to be corrupted. | | | GSFPS-<br>2516 | GS Ktr | Base | The GS <b>shall</b> pre-process raw instrument data at a rate to keep pace with the receipt of Transfer Frames over the space to ground link consistent with the Space Segment (SS) to Ground Located - Command, Control, and Communications Segment (GL-C3S) (P 417-R-IRD-0001) IRD. | | | GSFPS-<br>1982 | GS Ktr | Base | The GS <b>shall</b> monitor, by virtual channel, the quality and quantity of raw instrument data processed through the pre-processing function. | | | | | ES-R/Code 417 Version 1.10 | |-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Dev. Effort | Option | Requirement | | GS Ktr | Base | The GS <b>shall</b> capture the quality and quantity measures of the raw instrument data processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance. | | GS Ktr | Base | The GS <b>shall</b> store the quality and quantity measures of the raw instrument data processed through the pre-processing function, including synchronization performance, CCSDS Transfer Frame processing status, and error correction performance in a daily preprocessing performance log file. | | GS Ktr | Base | The GS <b>shall</b> monitor the status of the pre-processing function. | | GS Ktr | Base | The GS <b>shall</b> make instrument data pre-processing status information available to EM. | | GS Ktr | Base | The GS <b>shall</b> include mission operations data including spacecraft and instrument configuration, instrument observation data status, and ephemerides in preprocessing metadata. | | GS Ktr | Base | The GS <b>shall</b> store preprocessing metadata in the 5-day revolving temporary storage system. | | | | 6.24.1 Ranging Services | | GS Ktr | Base | The GS <b>shall</b> perform ranging through an RF link to the satellite to an accuracy of 50ns. | | ANT<br>(CCR-01430) | | The GS <b>shall</b> implement the ranging functionality in accordance with the Space Segment (SS) to Ground Located - Command, Control, and Communications Segment (GL-C3S) IRD (417-R-IRD-0001). | | ANT<br>(CCR-01430) | | The GS shall transmit a ranging signal. | | ANT | | The GS shall receive a ranging signal. | | GS Ktr | Base | The GS <b>shall</b> provide range measurements to the orbit determination function. | | GS Ktr | Base | The GS shall perform ranging through the GRB link. | | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> perform ground loop calibration for each antenna system utilized for GRB ranging. | | GS Ktr, ANT (CCR-01430) | Base | The GS <b>shall</b> perform ground loop calibration for each antenna system for purposes of ORT&TC ranging. | | | | 6.24.2 Space-Ground Communications Performance | | GS Ktr | Base | The GS <b>shall</b> process a minimum of eight physical command configurations for each satellite. | | GS Ktr | Base | The GS <b>shall</b> process up to eight physical telemetry stream configurations for each satellite. | | | | 6.25 Spacecraft Navigation | | GS Ktr | Base | The GS <b>shall</b> perform spacecraft attitude determination consistent with the error tolerances defined in the GIRD. | | GS Ktr | Base | The GS shall monitor spacecraft attitude determination and control data. | | | GS Ktr GS Ktr GS Ktr GS Ktr GS Ktr ANT (CCR-01430) ANT (CCR-01430) GS Ktr | GS Ktr Base | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. | | | | Version 1.10 | |----------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2021 | GS Ktr | Base | The GS <b>shall</b> verify the performance of the spacecraft attitude control system and the accuracy of the onboard attitude estimate. | | GSFPS-<br>2023 | GS Ktr | Base | The GS <b>shall</b> plan and execute satellite attitude maneuvers. | | GSFPS-<br>2025 | GS Ktr | Base | The GS <b>shall</b> perform post-launch satellite sensor and actuator alignment determination. | | GSFPS-<br>2027 | GS Ktr | Base | The GS <b>shall</b> perform determination of attitude sensor biases and sensor calibration parameters. | | GSFPS-<br>2029 | GS Ktr | Base | The GS <b>shall</b> perform determination of attitude actuator performance parameters. | | GSFPS-<br>2031 | GS Ktr | Base | The GS <b>shall</b> perform attitude control system calibration. | | GSFPS-<br>2033 | | | 6.26 Orbit Determination | | GSFPS-<br>2035 | GS Ktr | Base | The GS <b>shall</b> acquire two-line orbital elements to support launch and orbit raising activities. | | GSFPS-<br>2037 | GS Ktr | Base | The GS <b>shall</b> acquire and process measurement data for orbit determination, including raw range measurements, spacecraft instrument observations and engineering telemetry. | | GSFPS-<br>2039 | GS Ktr | Base | The GS <b>shall</b> plan orbit station management activities and station relocation maneuvers. | | GSFPS-<br>2041 | GS Ktr | Base | The GS <b>shall</b> plan and execute satellite orbit maintenance activities. | | GSFPS-<br>2043 | GS Ktr | Base | The GS <b>shall</b> plan and execute orbit relocation activities to change the orbit of a satellite. | | GSFPS-<br>2045 | GS Ktr | Base | The GS <b>shall</b> plan post-operational mission orbit raising disposal activities. | | GSFPS-<br>2047 | GS Ktr | Base | The GS <b>shall</b> execute post-operational mission orbit raising disposal activities. | | GSFPS-<br>2049 | GS Ktr | Base | The GS <b>shall</b> determine the orbit of each satellite during each mission phase from transfer orbit injection by the launch vehicle through verification of the final post-mission orbit-raising maneuver. | | GSFPS-<br>3066 | GS Ktr | Base | The GS <b>shall</b> plan orbital maneuvers and maneuver sequences such that maneuver plans may be reviewed 12 months in advance. | | GSFPS-<br>3067 | GS Ktr | Base | The GS <b>shall</b> model orbital maneuvers with an absolute accuracy of 5% deviation relative to the predicted and actual post-maneuver delta-V. | | GSFPS-<br>3068 | GS Ktr | Base | The GS <b>shall</b> determine spacecraft orbit within 120 meters. | | GSFPS-<br>3069 | GS Ktr | Base | The GS <b>shall</b> quantify the performance of the GS orbit determination estimate relative to the onboard orbit estimate. | | GSFPS-<br>3070 | GS Ktr | Base | The GS <b>shall</b> perform spacecraft thruster calibration for the purpose of maneuver planning and propellant management. | | GSFPS-<br>2051 | | | 6.27 Level 0 Processing | | GSFPS-<br>2055 | GS Ktr | Base | The GS <b>shall</b> ingest pre-processed instrument observation data. | | | | | | | | | | JES-R/Code 417 Version 1.10 | |----------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2057 | GS Ktr | Base | The GS <b>shall</b> process pre-processed instrument observation data by virtual channel. | | GSFPS-<br>2066 | GS Ktr | Base | The GS shall create L0 data. | | GSFPS-<br>2070 | GS Ktr | Base | The GS <b>shall</b> monitor and report effective data compression yields. | | GSFPS-<br>3110 | GS Ktr | Base | The GS <b>shall</b> allow the operator to retrieve, display, and export reports of effective compression yields. | | GSFPS-<br>2525 | GS Ktr | Base | The GS <b>shall</b> extract Instrument Calibration Data from the L0 data set (for 7-day storage and GS mission-life storage). | | GSFPS-<br>2080 | GS Ktr | Base | The GS <b>shall</b> create L0 product metadata that includes an accounting of uncorrectable errors in the data. | | GSFPS-<br>2082 | GS Ktr | Base | The GS <b>shall</b> make L0 product metadata available for downstream processing. | | GSFPS-<br>2090 | | | 6.28 Mission Management Storage | | GSFPS-<br>2094 | GS Ktr | Base | The GS <b>shall</b> store each copy of the satellite flight software (spacecraft and instrument) for the life of the mission. | | GSFPS-<br>3112 | GS Ktr | Base | The GS <b>shall</b> have the capability to retrieve, display, export, and store for the life of the mission operator-selected data from the 5-day revolving temporary storage. | | GSFPS-<br>2096 | GS Ktr | Base | The GS <b>shall</b> have the capability to retrieve 5-day revolving temporary storage data by selected time periods. | | GSFPS-<br>2769 | GS Ktr | Base | The GS <b>shall</b> be capable of replaying transfer frames from the 5-day revolving temporary storage back as a separate virtual satellite flow. | | GSFPS-<br>2098 | GS Ktr | Base | The GS <b>shall</b> allow copying selected data from the 5-day revolving temporary storage to removable media. | | GSFPS-<br>2103 | GS Ktr | Base | The GS <b>shall</b> capture and store Transfer Frames in the 5-day revolving temporary storage. | | GSFPS-<br>2826 | | | 6.28.1 Raw Data Recorder | | GSFPS-<br>2873 | GS Ktr | Base | The GS <b>shall</b> provide a standalone recorder for site specific data capture of instrument and spacecraft data streams. | | GSFPS-<br>2874 | GS Ktr | Base | The recorder <b>shall</b> accept the baseband data signal from the spacecraft and instruments. | | GSFPS-<br>2875 | GS Ktr | Base | The recorder <b>shall</b> be able to simultaneously record individual satellite telemetry and instrument data streams. | | GSFPS-<br>2876 | GS Ktr | Base | The GS <b>shall</b> provide a standalone recorder for site specific data playback of instrument and spacecraft data streams. | | GSFPS-<br>2877 | GS Ktr | Base | The input of the recorder <b>shall</b> be compliant with the applicable data stream ICD. | | GSFPS-<br>2878 | GS Ktr | Base | The output of the recorder <b>shall</b> be compliant with the applicable data stream ICD. | | GSFPS-<br>2879 | GS Ktr | Base | The recorder <b>shall</b> be portable/transportable. | | sion 1.10 | esponsible Organization: GOES-R/Coo | | |----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------| | | Dev. Effort Option Require | D | | lia and | drive un | SSFPS-<br>2880 | | asily | G- GS Ktr Base The recommovable | SSFPS-<br>881 | | ated data | G- GS Ktr Base The received sets on | SSFPS-<br>2882 | | ining bit | G- GS Ktr Base The receiptrors. | SSFPS-<br>2883 | | stream | GS Ktr Base The rec | SSFPS-<br>2884 | | | GS Ktr Base The reco | SSFPS-<br>2885 | | ified | G- GS Ktr Base The rec<br>interval( | SSFPS-<br>2886 | | pecified | GS Ktr Base The rec | SSFPS-<br>2887 | | ream. | GS Ktr Base The reco | SSFPS-<br>888 | | | GS Ktr Base The reconfigur | SSFPS-<br>8889 | | second | GS Ktr Base The reco | SSFPS-<br>2890 | | of the | GS Ktr Base During r | SSFPS-<br>891 | | ck to the | GS Ktr Base The reco | SSFPS-<br>2892 | | , for<br>election of | | SSFPS-<br>2893 | | g., time of back. | GS Ktr Base The receday, time | SSFPS-<br>2894 | | ons, as | GS Ktr Base The reco | SSFPS-<br>2895 | | | GS Ktr Base The reco | SSFPS-<br>2896 | | al-time, | GS Ktr Base The record-t | SSFPS-<br>898 | | ich it | GS Ktr Base The records | SSFPS-<br>899 | | d the | GS Ktr Base The reconnected contents | SSFPS-<br>900 | | | G- GS Ktr Base The reconnection contents each ite | SSFPS-<br>901 | | d<br>d | record-t G- GS Ktr Base The records | 898<br>SSFPS-<br>899<br>SSFPS-<br>900<br>SSFPS- | | Dev. Effort GS Ktr GS Ktr | Option Base Base | Requirement The recorder <b>shall</b> read the medium identifier and the content directory of all media loaded on it. The recorder <b>shall</b> display the medium identifier and the directory of | |---------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GS Ktr | | all media loaded on it. | | | Base | The recorder <b>shall</b> display the medium identifier and the directory of | | GS Ktr | | contents of media known to it. | | | Base | The recorder <b>shall</b> be configurable by the operator to accept external electronic triggers to start/stop recording. | | | | 6.29 Calibration Scheduling | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of routine radiometric calibration activities for ABI, using defined ABI modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of special radiometric calibration activities for ABI, using defined ABI modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of ABI lunar and stellar observations to allow long-term calibration drift measurement and correction. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of routine instrument calibration activities for GLM, using defined GLM modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of routine radiometric calibration activities for Solar Ultraviolet Imager (SUVI), using defined SUVI modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of long-term radiometric performance monitoring activities for SUVI, employing routine electronic calibration measurements, internal sources, and the sun, and using defined SUVI modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of routine radiometric calibration activities for Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), using defined EXIS modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of long-term radiometric performance monitoring activities for EXIS, employing routine electronic calibration measurements, internal sources, and the sun, and using defined EXIS modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of long-term performance trending for Space Environment In Situ Suite (SEISS), from routine electronic calibration using defined SEISS modes. | | GS Ktr | Base | The GS <b>shall</b> permit automated planning and scheduling of long-term performance trending for SEISS using defined SEISS modes. | | | | 7 PRODUCT GENERATION REQUIREMENTS | | | | 7.1 Overview | | | | Section 7 specifies the Product Generation (PG) function of the GOES-R Series GS. | | | GS Ktr GS Ktr GS Ktr GS Ktr GS Ktr GS Ktr | GS Ktr Base | | | | _ | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2108 | | | 7.2 Operational View | | GSFPS-<br>2110 | | | The PG function includes the generation of L1b and L2+ products from each GOES-R Series operational satellite on a continuous basis, meeting the applicable product latency requirements. Using the L1b and some L2+ output, the PG function also will create the GRB data set for rebroadcast by the GOES-R satellites and the eGVAR data set for rebroadcast by the GOES-N/O/P Ground System. | | GSFPS-<br>2132 | | | 7.3 Product Generation | | GSFPS-<br>2136 | GS Ktr | Base | The GS <b>shall</b> produce all End-Products identified in GS Product Sets 1 and 2 in accordance with Appendix A, Table 1 using the Government-supplied algorithms. | | GSFPS-<br>2953 | GS Ktr | 0001 | The GS <b>shall</b> produce all End-Products identified in GS Product Sets 1 and 2 in accordance with Appendix D using the Government-supplied algorithms. | | GSFPS-<br>2540 | GS Ktr | 0002 | The GS <b>shall</b> process all End-Product sets identified in GS Product Set 3 as listed in Appendix A, Table 3 using the Government-supplied algorithms. | | GSFPS-<br>2541 | GS Ktr | 0002 | The GS <b>shall</b> produce all End-Product sets identified in GS Product Set 4 in accordance with Appendix A, Table 3 using the Government-supplied algorithms. | | GSFPS-<br>3149 | | | The GS will produce products in NetCDF (currently version 4) and McIDAS for Atmosphere, Land, and Ocean Products, and NetCDF (currently version 4) and FITS for Space Products. | | GSFPS-<br>3156 | AWG | | The L2+ algorithms <b>shall</b> yield Atmospheric, Ocean, and Land End-Products listed in the associated product table, preserving the Geographic Coverage Areas of the data provided by the instruments, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>2152 | AWG | | The L2+ algorithms <b>shall</b> yield Atmospheric, Ocean, and Land End-Products meeting the following End-Product Performance Parameters as listed in the associated product table and subject to the Product Qualifiers Table in Appendix A: | | | | | a) Product Vertical Resolution b) Product Horizontal Resolution at nadir c) Product Mapping Accuracy at nadir d) Product Measurement Range e) Product Measurement Accuracy f) Product Measurement Precision | | | | | ES-R/Code 417 | Version 1.10 | |----------------|-------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | | GSFPS-<br>3100 | | | The Government will provide L1b algorithms that define processing instrument sensor data used to generate Atm and Land End-Products meeting the following End-Product Parameters as listed in the associated product table and Product Qualifiers Table in Appendix A: | nospheric, Ocean,<br>uct Performance | | | | | a) Geographic Coverage Area b) Product Vertical Resolution c) Product Horizontal Resolution at nadir d) Product Mapping Accuracy at nadir e) Product Measurement Range f) Product Measurement Accuracy g) Product Measurement Precision | | | GSFPS-<br>3194 | | | The Government will provide algorithms that define the reprocessing L1b data to generate L2+ Atmospheric, Ocean Products that meet the following End-Product Performant listed in the associated product table, subject to the Product in Appendix A: | an, and Land End-<br>nce Parameters as | | | | | a) Geographic Coverage Area b) Product Vertical Resolution c) Product Horizontal Resolution at nadir d) Product Mapping Accuracy at nadir e) Product Measurement Range f) Product Measurement Accuracy g) Product Measurement Precision | | | GSFPS-<br>3182 | | | The Government will provide L2+ algorithms that define processing instrument sensor data used to generate Atm and Land End-Products for Lightning Detection that mee End-Product Performance Parameters as listed in the as table and subject to the Product Qualifiers Table in Appe | nospheric, Ocean,<br>et the following<br>ssociated product | | | | | a) Geographic Coverage Area b) Product Vertical Resolution c) Product Horizontal Resolution at nadir d) Product Mapping Accuracy at nadir e) Product Measurement Range f) Product Measurement Accuracy g) Product Measurement Precision | | | GSFPS-<br>2164 | | | The Government will provide L1b algorithms that define processing instrument sensor data used to generate Spa Products meeting the following End-Product Performance listed in the associated product table and subject to the Fable in Appendix A: | ace Weather End-<br>ce Parameters as | | | | | a) Product Orthogonality / Coverage Areas b) Product Horizontal/Angular Resolution c) Product Pointing/Mapping Uncertainty d) Product Measurement Range e) Product Measurement Accuracy f) Product Measurement Precision | | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2150 | GS Ktr | Base | The GS <b>shall</b> generate the L1b Atmospheric, Ocean, and Land End-Products listed in the associated product table, using the government supplied algorithms, preserving the Geographic Coverage Areas of the data provided by the instrument, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3171 | GS Ktr | Base | The GS <b>shall</b> generate L1b Atmospheric, Ocean, and Land End-Products preserving the following End-Product Performance Parameters produced by the government-provided algorithm as listed in the associated product table and subject to the Product Qualifiers Table in Appendix A: | | | | | a) Product Vertical Resolution b) Product Horizontal Resolution at nadir c) Product Mapping Accuracy at nadir d) Product Measurement Range e) Product Measurement Accuracy f) Product Measurement Precision | | GSFPS-<br>2776 | GS Ktr | Base | The GS <b>shall</b> generate L1b Atmospheric, Ocean, and Land End-Products meeting the Product Refresh / Coverage Time for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>2777 | GS Ktr | 0001 | The GS <b>shall</b> generate L1b Atmospheric, Ocean, and Land End-Products meeting the Product Refresh / Coverage Time for each non-diagnostic instrument mode using the government-supplied algorithms listed in Appendix D, subject to the Product Qualifiers Table in Appendix A. (CCR01288) | | GSFPS-<br>3183 | GS Ktr | Base | The GS <b>shall</b> generate L1b Atmospheric, Ocean, and Land End-Products meeting the Vendor Allocated Ground Latency (VAGL) for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3184 | GS Ktr | 0001 | The GS <b>shall</b> generate L1b Atmospheric, Ocean, and Land End-Products meeting the VAGL for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix D, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3169 | GS Ktr | Base | The GS <b>shall</b> generate L1b Space Weather End-Products listed in the associated product table, preserving the Product Orthogonality/ Coverage of the data provided by the instrument, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3174 | GS Ktr | Base | The GS <b>shall</b> generate L1b Space Weather End-Products preserving the following End-Product Performance Parameters produced by the government-provided algorithm as listed in the associated product table and subject to the Product Qualifiers Table in Appendix A: | | | | | a) Product Horizontal/Angular Resolution b) Product Pointing/ Mapping Accuracy c) Product Pointing Knowledge / Mapping Uncertainty d) Product Measurement Range e) Product Measurement Accuracy f) Product Measurement Precision | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>3186 | GS Ktr | Base | The GS <b>shall</b> generate L1b Space Weather End-Products meeting the Product Refresh / Coverage Time for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3187 | GS Ktr | Base | The GS <b>shall</b> generate L1b Space Weather End-Products meeting the VAGL for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>2721 | GS Ktr | Base | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products preserving the following End-Product Performance Parameters produced by the government-provided algorithm as listed in the associated product table and subject to the Product Qualifiers Table in Appendix A: | | | | | a) Geographic Coverage Areas b) Product Vertical Resolution c) Product Horizontal Resolution at nadir d) Product Mapping Accuracy at nadir e) Product Measurement Range f) Product Measurement Accuracy g) Product Measurement Precision | | GSFPS-<br>3188 | GS Ktr | Base | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products meeting the Product Refresh / Coverage Time for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3189 | GS Ktr | 0001 | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products meeting the Product Refresh / Coverage Time for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix D, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3190 | GS Ktr | 0002 | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products meeting the Product Refresh / Coverage Time for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 3 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3191 | GS Ktr | Base | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products meeting the VAGL for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3192 | GS Ktr | 0001 | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products meeting the VAGL for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 1 Appendix D, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>3193 | GS Ktr | 0002 | The GS <b>shall</b> generate L2+ Atmospheric, Ocean, and Land End-Products meeting the VAGL for each non-diagnostic instrument mode using the government-supplied algorithms listed in Table 3 Appendix A, subject to the Product Qualifiers Table in Appendix A. | | GSFPS-<br>2758 | GS Ktr | Base | The GS <b>shall</b> generate End-Products based on the Government-provided Algorithm Packages such that the comparison of GS test data outputs and AWG test data outputs yields reproducibility based on squared correlation coefficient (r-squared) between these two of at least 0.9995 with no more than 1% of the compared values having error greater than 0.15% from the AWG-provided value for the given data point. | | ID<br>GSFPS- | Dev. Effort | Option | Requirement | |----------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | requirement | | 3129 | GS Ktr | Base | The GS <b>shall</b> refresh sectorized products in accordance with Appendix E. | | GSFPS-<br>2148 | GS Ktr | Base | The GS <b>shall</b> monitor and report all end-product performance parameter compliance. | | GSFPS-<br>2542 | GS Ktr | Base | The GS <b>shall</b> store end-product performance parameters for the life of the mission. | | GSFPS-<br>2543 | GS Ktr | Base | The GS <b>shall</b> forward the end-product performance parameters report to EM. | | GSFPS-<br>1434 | GS Ktr | Base | The GS <b>shall</b> collect and report to EM performance measures at a level of detail sufficient to assess the margin on a per-process and per-product basis for product latency and refresh. | | GSFPS-<br>2180 | GS Ktr | Base | The GS <b>shall</b> monitor and report all end-product performance parameters listed in the Appendix A end-product Table. | | GSFPS-<br>2205 | | | The KPPs consist of: cloud and moisture imagery: CONUS, Full Disk, and Mesoscale, and sectorized products. The performance and quality constraints for CONUS, Full Disk, and Mesoscale KPP end-products are defined in Appendices A through D. The GS performance requirements with respect to sectorized products are defined in Appendix E. | | GSFPS-<br>2215 | | | 7.4 Metadata Generation | | GSFPS-<br>3168 | | | The GS Data Management Plan [G417-R-PLN-0131] provides guidelines for GOES-R metadata. | | GSFPS-<br>2217 | GS Ktr | Base | The GS <b>shall</b> generate metadata describing completeness of input, identifying content outliers, and documenting the UTC time of completion of production for each L1b and L2+ data product. | | GSFPS-<br>2928 | GS Ktr | Base | The GS <b>shall</b> generate metadata that provides sufficient information at all levels of data granularity to be able to identify, evaluate, extract, employ and manage the data and data products from GOES-R. | | GSFPS-<br>2219 | GS Ktr | Base | The GS <b>shall</b> generate metadata that contains all mandatory attributes and relevant optional attributes of the ISO 19115 - Metadata standard. | | GSFPS-<br>2929 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19115-2 - Geographic Information - Metadata - Part 2: Extensions for imagery and gridded data. | | GSFPS-<br>3073 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO/TR 19121 - Geographic Information - Imagery and Gridded Data. | | GSFPS-<br>2793 | GS Ktr | Base | The GS <b>shall</b> generate metadata compliant with FGDC standards. | | GSFPS-<br>2794 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19130 - Sensor and data model for imagery and gridded data (includes SensorML). | | GSFPS-<br>2930 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19136 - Geography Markup Language (GML). | | GSFPS-<br>2931 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19138 - Data quality measures. | | GSFPS-<br>2932 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19139 - Metadata - XML Schema Implementation. | | | | | PES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>3074 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 6709 Standard representation of latitude, longitude and altitude for geographic point locations. | | GSFPS-<br>3196 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19109 - Geographic information Rules for Application Schema. <i>(CCR01285)</i> | | GSFPS-<br>3195 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19113 - Geographic information Quality principles. <i>(CCR01285)</i> | | GSFPS-<br>3197 | GS Ktr | Base | The GS <b>shall</b> generate metadata that is compliant with ISO 19114 - Geographic information Quality evaluation procedures. <i>(CCR01285)</i> | | GSFPS-<br>2933 | GS Ktr | Base | The GS <b>shall</b> generate metadata that includes metadata attributes that are generated by current legacy GOES products. | | GSFPS-<br>2934 | GS Ktr | Base | The GS <b>shall</b> generate metadata that supports anomaly recognition. | | GSFPS-<br>2935 | GS Ktr | Base | The GS <b>shall</b> generate metadata that supports operational quality assessment. | | GSFPS-<br>2936 | GS Ktr | Base | The GS <b>shall</b> generate metadata that supports operational applications and decision support systems. | | GSFPS-<br>2937 | GS Ktr | Base | The GS <b>shall</b> generate metadata that supports scientific use including information that is necessary for discipline area and interdisciplinary studies. | | GSFPS-<br>2938 | GS Ktr | Base | The GS <b>shall</b> generate metadata that supports long term preservation, including information necessary to identify the data in the long-term future and to sufficiently characterize that data so that it can be used in climatological science to construct a climate record. | | GSFPS-<br>2939 | GS Ktr | Base | The GS <b>shall</b> generate metadata using a model that is extensible. | | GSFPS-<br>2795 | GS Ktr | Base | The GS <b>shall</b> generate metadata files that include data provenance. | | GSFPS-<br>2940 | GS Ktr | Base | The GS <b>shall</b> generate metadata needed for archival and stewardship. | | GSFPS-<br>2941 | GS Ktr | Base | The GS <b>shall</b> generate metadata required for data reprocessing. | | GSFPS-<br>2942 | GS Ktr | Base | The GS <b>shall</b> generate metadata required for real-time processing and use by NWS. | | GSFPS-<br>2943 | GS Ktr | Base | The GS <b>shall</b> generate metadata required for processing and use by OSDPD. | | GSFPS-<br>3094 | GS Ktr | Base | The GS shall create end-product attribute reports. | | GSFPS-<br>2221 | | | 7.5 Product Generation Supervision | | GSFPS-<br>2223 | GS Ktr | Base | The GS shall monitor and report PG status. | | GSFPS-<br>2225 | GS Ktr | Base | The GS <b>shall</b> notify operators of data and product anomalies. | | GSFPS-<br>2229 | GS Ktr | Base | The GS <b>shall</b> enable operations analyses of anomalous conditions. | | GSFPS-<br>2231 | GS Ktr | Base | The GS <b>shall</b> manage anomaly investigation reports in a database for the life of the mission. | | GSFPS-<br>2544 | GS Ktr | Base | The GS shall capture event messages of PG events. | | | | _ | 7E5-R/Code 417 Version 1.10 | |----------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2546 | GS Ktr | Base | The GS <b>shall</b> selectively filter PG event messages based on operator designation for forwarding to EM. | | GSFPS-<br>2547 | GS Ktr | Base | The GS <b>shall</b> forward filtered event messages of PG events to EM. | | GSFPS-<br>2233 | | | 7.6 Generate Level 1 Products | | GSFPS-<br>2789 | GS Ktr | Base | The GS <b>shall</b> produce L1b products for all non-diagnostic data-producing instrument modes of the satellite in accordance with Appendix A, Table 1. | | GSFPS-<br>3101 | GS Ktr | 0001 | The GS <b>shall</b> produce L1b products for all non-diagnostic data-producing instrument modes of the satellite in accordance with Appendix D. | | GSFPS-<br>3097 | GS Ktr | Base | The GS <b>shall</b> produce GRB products for uplink at the rate at which the instruments produce data on a swath-by-swath basis. | | GSFPS-<br>2235 | GS Ktr | Base | The GS <b>shall</b> collect L1b product quality metrics to include loss of source data input and number of outlier detections. | | GSFPS-<br>2554 | GS Ktr | Base | The GS <b>shall</b> append instrument derived calibration and navigation information for those L1b products not resampled to the fixed grid. | | GSFPS-<br>2237 | GS Ktr | Base | The GS <b>shall</b> assemble GOES-R products and associated metadata nominally produced at WCDAS for GRB uplink in accordance with the following allocation: | | | | | a) LHCP: L1b products from ABI 0.64 um band and 6 IR bands (3.9, 6.185, 7.34, 11.2, 12.3, and 13.3 um) | | | | | b) RHCP: L1b products from ABI bands 0.47, 0.865, 1.378, 1.61, 2.25, 6.95, 8.5, 9.6 and 10.35 um, L2+ GLM, L1b SUVI, L1b EXIS, and L1b SEISS products as specified in Appendices A-D, and Magnetometer data | | GSFPS-<br>2555 | GS Ktr | Base | The GS <b>shall</b> apply lossless compression for GRB. | | GSFPS-<br>2556 | GS Ktr | Base | The GS <b>shall</b> format all data for transfer over the GRB link using CCSDS 133.0-B-1 Section 4.1 Protocol Data Unit. | | GSFPS-<br>2557 | GS Ktr | Base | The GS <b>shall</b> constrain the GRB CCSDS Space Packet data zone to not exceed 16,384 octets. | | GSFPS-<br>2559 | GS Ktr | Base | The GS <b>shall</b> append a CRC integrity measure to each GRB Space Packet. | | GSFPS-<br>2680 | GS Ktr | Base | The GS shall provide GRB Information Packets each 5 minutes that include, at a minimum: a) For ABI: 1) ABI operations mode 2) ABI coverage scheduling b) For All Instruments: 1) Instrument Calibration Data necessary for L1b processing 2) Messages for other than operational instrument modes 3) Events either occurring or planned that impact routine data coverage | | GSFPS-<br>2681 | GS Ktr | Base | The GS <b>shall</b> generate emulated GVAR (eGVAR) data in accordance with the Ground Segment (GS) to GOES N/O/P Ground System Interface Requirements Document (IRD) (P 417-R-IRD-0158). | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> generate eGVAR using the following ABI bands: | | 3150 | | | 0.64, 3.9, 6.19, 11.2, and 13.3 um. | | GSFPS-<br>3151 | GS Ktr | Base | The GS <b>shall</b> generate eGVAR from Full Disk ABI scans every 30 minutes. | | GSFPS-<br>2548 | GS Ktr | Base | The GS <b>shall</b> generate the L1b products in accordance with Government-supplied algorithms. | | GSFPS-<br>2549 | GS Ktr | Base | The GS <b>shall</b> report outliers detected such as saturated samples during the ABI resampling process. | | GSFPS-<br>2550 | GS Ktr | Base | The GS <b>shall</b> store in a separate file in the 7-day revolving temporary storage a record of the sample array used in the ABI resampling to a fixed grid pixel, when outlier(s) are detected. | | GSFPS-<br>2354 | GS Ktr | Base | The GS <b>shall</b> provide eGVAR data in accordance with the Ground Segment (GS) to GOES N/O/P Ground System Interface Requirements Document (IRD) (P 417-R-IRD-0158). | | GSFPS-<br>2926 | GS Ktr | Base | The GS <b>shall</b> create L1b product metadata that includes an accounting of uncorrectable errors detected in the raw data link that propagate to L1b, algorithm software version, and instrument serial number. | | GSFPS-<br>3075 | GS Ktr | Base | The GS <b>shall</b> include L1b product quality metrics in the L1b metadata. | | GSFPS-<br>3076 | GS Ktr | Base | The GS <b>shall</b> append the L1b metadata to the L1b product. | | GSFPS-<br>3077 | GS Ktr | Base | The GS <b>shall</b> use a separate APID in the CCSDS Header unique for each data type. | | GSFPS-<br>3079 | GS Ktr | Base | The GS <b>shall</b> produce L1b products for diagnostic data-producing instrument modes of the satellite in which the data produced by the instruments supports L1b product generation. | | GSFPS-<br>3080 | GS Ktr | Base | The GS <b>shall</b> identify L1b products generated from diagnostic data-producing instrument modes. | | GSFPS-<br>2243 | | | 7.7 Instrument Radiometric (including Photometric) and Energetic Particle Calibration | | GSFPS-<br>2249 | GS Ktr | Base | The GS <b>shall</b> perform instrument radiometric (including photometric) or energetic particle calibration for each instrument using calibration algorithms supplied by the Government and calibration database constants developed by each instrument vendor and provided by the Government. | | GSFPS-<br>2251 | GS Ktr | Base | The GS <b>shall</b> receive instrument calibration database parameters and database parameter updates from the Government. (CCR01429) | | GSFPS-<br>2956 | GS Ktr | Base | The GS <b>shall</b> apply the instrument radiometric and energetic particle calibration to the data to produce L1b products. | | GSFPS-<br>2563 | GS Ktr | Base | The GS <b>shall</b> ingest calibration database parameters. (CCR01429) | | GSFPS-<br>2564 | GS Ktr | Base | The GS <b>shall</b> implement instrument calibration parameters into GS instrument calibration databases. (CCR01429) | | GSFPS-<br>2257 | GS Ktr | Base | The GS <b>shall</b> receive pre-launch vendor detector selection tables to be used to baseline the condition of the detector array. | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2259 | GS Ktr | Base | The GS <b>shall</b> maintain ABI detector selection tables. | | GSFPS-<br>3081 | GS Ktr | Base | The GS <b>shall</b> provide for variable ABI bit depth quantities by band as long as radiance precision is maintained in order to conserve GRB bandwidth. | | GSFPS-<br>3201 | AWG | | The GS <b>shall</b> apply radiance drift corrections to compensate for at least 1% radiance drift due to expected ABI instrument degradation (from 1.5% to 0.5% over the lifetime of the instrument). <i>(CCR01396)</i> | | GSFPS-<br>3202 | GS Ktr | Base | The GS <b>shall</b> have the capability to apply drift corrections, by instrument channel, to compensate for instrument degradation. <i>(CCR01396)</i> | | GSFPS-<br>2267 | | | 7.8 Generate Level 2+ Products | | GSFPS-<br>2565 | GS Ktr | Base | The GS <b>shall</b> ingest L1b data as input to L2+ product processing. | | GSFPS-<br>2289 | GS Ktr | Base | The GS <b>shall</b> capture L2+ product quality measurements of derived content measure that include average, maximum and minimum content values. | | GSFPS-<br>2287 | GS Ktr | Base | The GS shall create the L2+ products. | | GSFPS-<br>2271 | GS Ktr | Base | The GS <b>shall</b> receive ancillary data from the ADRS in accordance with the Ground Segment (GS) To Ancillary Data Relay System (ADRS) Interface Requirements Document (IRD) (P 417-R-IRD-0157). | | GSFPS-<br>2283 | GS Ktr | Base | The GS <b>shall</b> manage product algorithm software, documentation and metadata. | | GSFPS-<br>2927 | GS Ktr | Base | The GS <b>shall</b> create L2+ product metadata that includes an accounting of uncorrectable errors propagated to L2+ products, L2+ quality metrics, L2+ end-product performance parameter compliance metrics, algorithm software version, ancillary data version(s), and instrument serial number. | | GSFPS-<br>3181 | GS Ktr | Base | The GS <b>shall</b> append the L2+ metadata to the L2+ product. | | GSFPS-<br>2293 | | | 7.9 Product Generation Storage | | GSFPS-<br>2295 | GS Ktr | Base | The GS <b>shall</b> assign a unique file identifier to each product. | | GSFPS-<br>2297 | GS Ktr | Base | The GS <b>shall</b> create and append an integrity measurement to all products processed through the GS. | | GSFPS-<br>2301 | GS Ktr | Base | The GS <b>shall</b> store L1b product quality measurements of derived content measure that include average, maximum and minimum content values for the life of the mission. | | GSFPS-<br>2818 | | | 7.10 GOES Rebroadcast Simulator | | GSFPS-<br>2682 | GS Ktr | Base | The GS <b>shall</b> provide a standalone simulation of the GRB rebroadcast data stream for local, on-site testing of user ingest and data handling systems. | | GSFPS-<br>2796 | GS Ktr | Base | The GRB Simulator <b>shall</b> be portable/transportable. | | GSFPS-<br>2797 | GS Ktr | Base | The output of the GRB Simulator <b>shall</b> be consistent with the GRB output, including physical layer link characteristics specified in the Space Segment to GOES Rebroadcast IRD, 417-R-IRD-0002, and subsequent Space Segment ICDs. <i>(CCR01328)</i> | | | | | ES-R/Code 417 Version 1.10 | |----------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2798 | GS Ktr | Base | The GRB Simulator <b>shall</b> have user selectable "off-line" mode (e.g., for operator interactive activities of scenario and test pattern creation or modification, configuration definition). | | GSFPS-<br>2799 | GS Ktr | Base | The GRB Simulator <b>shall</b> have a user selectable "on-line" mode (for output of GRB). | | GSFPS-<br>2800 | GS Ktr | Base | The GRB Simulator <b>shall</b> output data, without user intervention, over a period of at least 5-days, incrementing all time and header fields in a realistic manner and in accordance with the expectation of the GRB section of the Product Definition and Users' Guide (CDRL SE-16). (CCR01328) | | GSFPS-<br>2801 | GS Ktr | Base | The GRB Simulator <b>shall</b> output data utilizing user defined scenarios and configurations. | | GSFPS-<br>2802 | GS Ktr | Base | The GRB Simulator <b>shall</b> provide for user (manual) creation of scenarios, configurations, and test patterns for use by the operator. | | GSFPS-<br>2803 | GS Ktr | Base | The GRB Simulator <b>shall</b> provide for the input of scenarios, configurations, test patterns, and proxy data from externally created files. | | GSFPS-<br>2804 | GS Ktr | Base | The GRB Simulator <b>shall</b> store scenarios, configurations, test patterns, and proxy data files for use as directed by the user. | | GSFPS-<br>2805 | GS Ktr | Base | The GRB Simulator <b>shall</b> accept a user configurable starting point for simulations, e.g. time of day, day of year, and data content. | | GSFPS-<br>2806 | GS Ktr | Base | The GRB Simulator <b>shall</b> output user modifiable/configurable content based on GRB Scenarios currently being output. | | GSFPS-<br>2807 | GS Ktr | Base | The GRB Simulator <b>shall</b> create user designated errors (type and frequency) in the output stream when so directed. | | GSFPS-<br>2808 | GS Ktr | Base | The GRB Simulator <b>shall</b> output GRB at IF. | | GSFPS-<br>2809 | GS Ktr | Base | The GRB Simulator <b>shall</b> output GRB at baseband. | | GSFPS-<br>2810 | GS Ktr | Base | The GRB Simulator <b>shall</b> display its status to the user, including real-time, simulation-time, and configuration and test/proxy data in use. | | GSFPS-<br>2811 | GS Ktr | Base | The GRB Simulator <b>shall</b> require only generally available hand tools for take-down and packing for shipment from a site, and un-packing and setup on receipt at a site. | | GSFPS-<br>2813 | GS Ktr | Base | The GRB Simulator <b>shall</b> provide user definition of header and documentation fields at the word level. | | GSFPS-<br>2814 | GS Ktr | Base | The GRB Simulator <b>shall</b> provide user selectable pattern generation for data fields. | | GSFPS-<br>2815 | GS Ktr | Base | The GRB Simulator <b>shall</b> provide user selection of stored and imported (externally prepared) files for header, documentation, and data fields. | | GSFPS-<br>2816 | GS Ktr | Base | The GRB Simulator <b>shall</b> maintain an event log. | | GSFPS-<br>2817 | GS Ktr | Base | The GRB Simulator <b>shall</b> generate time field values based on "on-line" mode user selection of either a fixed reference time or actual wall-clock time. | | | onsible Organiz | | | |----------------|-----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2958 | | | 7.11 Operational Instrument Calibration Data Metrics Monitoring | | GSFPS-<br>2959 | GS Ktr | Base | The GS <b>shall</b> be capable of operational monitoring and display of the operational (current and trended) values for the following Instrument Calibration Data parameters: | | | | | a) ABI Component temperatures 1) Blackbody 2) Mirrors 3) Detector (patch) 4) Baseplate 5) Electronics 6) Cooler (or cooler housing) b) Radiometric Data (Note: 6 and 7 are for ABI calibration drift correction) 1) Noise (NEDN/NEDT) 2) Calibration coefficients (such as intercept and slope) 3) Blackbody counts 4) Space view counts 5) Radiometric PRT counts 6) Lunar scans 7) Star catalog scans c) GLM electronic and scene data collected for calibration on command (slew spacecraft to collect non-earth scene) d) SUVI electronic calibration collected on command | | GSFPS-<br>2960 | GS Ktr | Base | The GS <b>shall</b> provide the capability to remotely view the current and trended Instrument Calibration Data metrics displays from external algorithm maintenance or calibration / validation facilities. | | GSFPS-<br>2326 | | | 8 PRODUCT DISTRIBUTION REQUIREMENTS | | GSFPS-<br>2328 | | | 8.1 Overview | | GSFPS-<br>2567 | | | Section 8 specifies the PD element functionality of the GOES-R GS. The PD element provides real-time continuous network distribution of GS products and data. The GOES-R Access Subsystem portion of PD includes revolving temporary 7-day storage of products and data. It also includes the GOES-R Access Point that provides product availability for, and distribution to users. The GOES-R Access Subsystem will be designed, developed, and transitioned by the OSD organization with support from the GSP for GS integration. | | GSFPS-<br>2330 | | | Data and information will be provided by the PD functionality in support of authorized GOES-R users. | | GSFPS-<br>3152 | | | PD is responsible for any reformatting, reprojection, subsetting (sectorizing), and routing for distribution to the AWIPS interface. AWIPS data is routed to NWS per the GOES-R Series Ground Segment (GS) to Advanced Weather Interactive Processing System (AWIPS) Interface Requirements Document (IRD) (P417-R-IRD-0160). | | | | ES-R/Code 417 Version 1.10 | |----------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Dev. Effort | Option | Requirement | | | | The major PD functions are: | | | | <ul> <li>a) Delivery of products and associated supporting data for long-term archive to CLASS</li> <li>b) Delivery of products and mission data to satisfy product subscriptions and one-time delivery of products and mission data to meet latency delivery requirements</li> <li>c) Delivery of sectorized cloud and moisture imagery to AWIPS</li> </ul> | | | | 8.2 Product and Data Dissemination | | GS Ktr, GAS<br>(CCR-01430) | Base | The GS <b>shall</b> make available all L1b and L2+ products as specified in Appendix A through the GOES-R Access Point. | | All<br>(CCR-01414) | 0001 | The GS <b>shall</b> make available all L1b and L2+ products as specified in Appendix D to the GOES-R Access Subsystem. | | GS Ktr, OSO<br>(CCR-01430) | Base | The GS <b>shall</b> send products and data to CLASS for archive in accordance with the Ground Segment (GS) To Comprehensive Large Array-Data Stewardship System (CLASS) Interface Requirements Document (IRD) (417-R-IRD-0090). | | GAS<br>(CCR-01430) | | The GS <b>shall</b> acknowledge receipt of data requests within ten seconds (10 seconds) (TBR). | | GS Ktr | Base | The GS <b>shall</b> provide Instrument Calibration Data to include star looks (instrument CAL, Instrument CAL / drift), blackbody temperatures, mirror temperatures, space look, and lunar observations to the GOES-R Access Subsystem. | | GAS<br>(CCR-01430) | | The GS <b>shall</b> limit data subscriptions based on operator configurable parameters (e.g., total duration, and single request data volume). | | GS Ktr | Base | The GS <b>shall</b> produce CLASS Submission Manifests, in accordance with the Submission Agreements between GOES-R Ground Segment and NGDC/NCDC [CDRL SE-20] that identify all data, information and products to be sent to CLASS for long-term archival storage. | | GS Ktr | Base | The GS <b>shall</b> produce CLASS Manifest activity reports, in accordance with the Submission Agreements between GOES-R Ground Segment and NGDC/NCDC [CDRL SE-20], containing a 72-hour data submission summary. | | GS Ktr | Base | The GS <b>shall</b> produce CLASS File activity reports, in accordance with the Submission Agreements between GOES-R Ground Segment and NGDC/NCDC [CDRL SE-20], containing a 72-hour summary of files sent to CLASS. | | | | The operator will have the capability to configure which products are to be sent to CLASS, and adjust the archive status of any output product (based on policy decisions). Whenever the GS produces a product, data item, or file identified as "for archive," the GS will make it available for transmission to CLASS in accordance with the GS to CLASS IRD. | | GS Ktr | Base | The GS <b>shall</b> have the capability for the operator to change the long-term archival storage status of any GS products, data item or file (i.e., identify as "for archive" or "not for archive.") | | | All (CCR-01414) GS Ktr, OSO (CCR-01430) GAS (CCR-01430) GS Ktr GAS (CCR-01430) GS Ktr GS Ktr GS Ktr | GS Ktr, GAS (CCR-01430) All (CCR-01414) GS Ktr, OSO (CCR-01430) GS Ktr Base GAS (CCR-01430) GS Ktr Base GS Ktr Base GS Ktr Base | | | onsible Organiz | | | |----------------|----------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>2356 | | | 8.3 Authorized User Services | | GSFPS-<br>2995 | | | The GS will have the capability to build a set of sectorized products per satellite for forwarding to the NWS AWIPS. Each product in the set will be defined by the operator. Products will be defined based on six parameterscorner points, map projection, spatial resolution, bit depth, ABI channel, and periodicity. The full set of sectorized products established by these parameters will be forwarded to AWIPS as they are produced. GS performance requirements with respect to sectorized products are defined in Appendix E. | | GSFPS-<br>2358 | GS Ktr, OSO<br>(CCR-01430) | Base | The GS <b>shall</b> provide all sectorized cloud and moisture imagery products to the NWS using the transfer mechanism specified in the Ground Segment (GS) To Advanced Weather Interactive Processing System (AWIPS) Interface Requirements Document (IRD) (417-R-IRD-0160). | | GSFPS-<br>3128 | GS Ktr | Base | The GS <b>shall</b> be capable of producing and distributing sectorized products in accordance with Appendix E. <i>(CCR01414)</i> | | GSFPS-<br>2996 | GS Ktr | Base | The GS <b>shall</b> provide the capability to modify the set of operator-defined sectorized cloud and moisture imagery products. | | GSFPS-<br>2998 | GS Ktr | Base | The GS <b>shall</b> provide the capability for operator modification of sectorized cloud and moisture imagery product parameters. | | GSFPS-<br>3083 | GS Ktr | Base | The GS <b>shall</b> be capable of producing sectorized cloud and moisture imagery products based on any single operator-selected ABI channel. | | GSFPS-<br>2957 | GS Ktr | Base | The GS <b>shall</b> be capable of producing an operator-defined set of sectorized cloud and moisture imagery products. | | GSFPS-<br>3084 | GS Ktr | Base | The GS shall have the capability to define sectorized cloud and moisture imagery products from CONUS imagery based on the following operator-configured parameters a) Geographic coordinate corner points b) Map projection c) Spatial resolution d) Bit depth scaling e) ABI channel f) Periodicity | | GSFPS-<br>3085 | GS Ktr | Base | The GS <b>shall</b> have the capability to define sectorized cloud and moisture imagery products from Mesoscale imagery based on the following operator-configured parameters: a) Map projection b) Spatial resolution c) Bit depth scaling d) ABI channel e) Periodicity | | 1,000 | | | ES-R/Code 417 Version 1.10 | |----------------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID | Dev. Effort | Option | Requirement | | GSFPS-<br>3086 | GS Ktr | Base | The GS <b>shall</b> have the capability to define sectorized cloud and moisture imagery products from Full Disk imagery based on the following operator-configured parameters: | | | | | <ul> <li>a) Geographic coordinate corner points</li> <li>b) Map projection</li> <li>c) Spatial resolution</li> <li>d) Bit depth scaling</li> <li>e) ABI channel</li> <li>f) Periodicity</li> </ul> | | GSFPS-<br>2684 | GS Ktr | Base | The GS <b>shall</b> have the capability to remap sectorized cloud and moisture imagery products to the following projections: | | | | | a) Mercator b) Lambert Conformal c) Polar Stereographic | | GSFPS-<br>2687 | GS Ktr | Base | The GS <b>shall</b> have the capability to scale sectorized cloud and moisture imagery products across a range from full resolution to 8 bits based on operator configuration. | | GSFPS-<br>2688 | GS Ktr | Base | The GS <b>shall</b> be capable of producing operator-defined reduced-<br>resolution sectorized cloud and moisture imagery products with spatial<br>resolution size range between 0.5 km and 28 km. | | GSFPS-<br>3000 | GS Ktr | Base | The GS <b>shall</b> be capable of producing sectorized products with an operator-defined periodicity equal to or less frequently than the parent cloud and moisture imagery products are produced by the GS. | | GSFPS-<br>2576 | GAS<br>(CCR-01430) | | The GS <b>shall</b> make any item placed in the 7-day revolving temporary storage by the GOES-R GS available through the GOES-R Access Point. | | GSFPS-<br>2366 | GAS<br>(CCR-01430) | | The GS <b>shall</b> collect performance measurements on GOES-R Access Point new and retiring users, user requests, request acknowledgements, data and product transmissions and transaction information / latency. | | GSFPS-<br>1487 | GAS<br>(CCR-01430) | | The GS <b>shall</b> manage user account information, including: user contact information, the level of service a user is authorized to request, links to related log entries, and user organization information. | | GSFPS-<br>2368 | GAS<br>(CCR-01430) | | The GS <b>shall</b> report on GOES-R Access Point performance measurements. | | GSFPS-<br>2370 | GAS<br>(CCR-01430) | | The GS <b>shall</b> administer GOES-R Access Point User accounts. | | GSFPS-<br>2372 | GAS<br>(CCR-01430) | | The GS <b>shall</b> provide access to mission operations data sent from mission management to the GOES-R Access Subsystem. (CCR01330) | | GSFPS-<br>2578 | GS Ktr | Base | The GS <b>shall</b> provide mission operations data, satellite configuration, instrument imaging schedules, maneuver schedules, special operations schedules, calibration plans and activities, unique payload configuration and status, spacecraft ephemerides, and acquisition data; to the GOES-R Access Subsystem. <i>(CCR01330)</i> | | GSFPS-<br>2374 | GAS<br>(CCR-01430) | | The GS <b>shall</b> provide an Identification and Authentication mechanism, separate from that for operations personnel, for external Users (NIST SP 800-82) that meets the electronic authentication (eAuthentication) requirements of OMB M-04-04, E-Authentication Guidance for Federal Agencies, and NIST SP 800-63, Electronic Authentication Guideline. | | | | | 5-R/Code 417 Version 1.10 | |----------|-------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GSFPS- G | SAS | - | Requirement The GS <b>shall</b> provide a subscription service to GOES-R Access Point | | 2376 (0 | CCR-01430) | | Users that allows subscriptions to be configured by a minimum of the following parameters: | | | | 1 | a) Geographic Coverage Area b) Date c) Time d) Time period e) Product ID / name c) Quality flags g) Data format spacecraft ID Channel number Instrument name k) Instrument mode Data type (CCR01392) | | | GAS<br>CCR-01430) | 1 | The GS <b>shall</b> provide a data and information query service to GOES-R Access Point Users including at a minimum the following searchable parameters: | | | | 1 | a) Geographic Coverage Area b) Date c) Time d) Time period e) Product ID / name c) Quality flags g) Data format h) Spacecraft ID Channel number l Instrument name k) Instrument mode b) Data type (CCR01392) | | | GAS<br>CCR-01430) | | The GS <b>shall</b> provide an ad hoc request service to GOES-R Access Point Jsers. | | | GAS<br>CCR-01430) | | The GS <b>shall</b> support a minimum of 1,000 users connected simultaneously to the GOES-R Access Point. | | | GAS<br>CCR-01430) | | The GS <b>shall</b> accommodate concurrent transfers of product files to 100 (TBR) ad hoc users through the GOES-R Access Point. | | 2916 (0 | GAS<br>CCR-01430) | t | The GS <b>shall</b> begin transfer of any requested and available product from the GOES-R Access Point to the requester within five (5) seconds (TBR) of ad hoc request validation. | | 2917 (0 | GAS<br>CCR-01430) | t | The GS <b>shall</b> begin the transfer of a subscribed product consistent with the latency in Appendix B, for those subscriptions fulfilled via the GOES-R Access Point. (CCR01291) | | 2384 (0 | GAS<br>CCR-01430) | F | The GS <b>shall</b> receive data requests from Users to the GOES-R Access Point. | | 2386 (0 | GAS<br>CCR-01430) | F | The GS <b>shall</b> validate data requests from Users to the GOES-R Access Point. | | | GAS<br>CCR-01430) | | The GS <b>shall</b> store data requests from Users to the GOES-R Access Point or 90 days in a product distribution log. | | ID<br>GSFPS- | Dev. Effort | Option | Requirement | |----------------------------------|---------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GSFPS- | | | | | JU: 1 | GAS | | The GS <b>shall</b> check for duplicate data and product requests from the | | 2390 | (CCR-01430) | | same GOES-R Access Point User as part of the request validation | | 2000 | (00/10/ | | | | | | | process. | | GSFPS- | GAS | | The GS shall provide help information to GOES-R Access Point Users | | 2392 | | | | | 2392 | (CCR-01430) | | when setting up their requests. | | GSFPS- | GAS | | The GS <b>shall</b> disseminate reports of status of queries and requests upon | | | | | | | 2406 | (CCR-01430) | | request from GOES-R Access Point Users. | | GSFPS- | GAS | | The GS <b>shall</b> fulfill requests from Users for product retransmission via the | | | | | | | 2408 | (CCR-01430) | | GOES-R Access Point for up to 7-days after product generation. | | CCEDC | | Daga | The CC shall collect an education click life, and atomic information | | GSFPS- | GS Ktr, GAS | Base | The GS <b>shall</b> collect product availability and status information. | | 2412 | (CCR-01430) | | | | GSFPS- | GS Ktr, GAS | Base | The GS <b>shall</b> report product availability and status information. | | 2577 | (CCR-01430) | | The Colonial report product are all a state of the | | | | | T. 00 I II | | GSFPS- | GAS | | The GS <b>shall</b> provide product status to GOES-R Access Point Users on | | 2414 | (CCR-01430) | | request. | | | , | | ' | | GSFPS- | | | 8.4 Data Product Delivery | | 2420 | | | 6.4 Data Froduct Detivery | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> forward filtered event messages of product distribution | | | GS KII | Dase | , · · · · · · · · · · · · · · · · · · · | | 2582 | | | events to EM. | | 00550 | 00.1/1 | D | The CO of all and a first DD and a second and a second as | | GSFPS- | GS Ktr | Base | The GS <b>shall</b> selectively filter PD event messages based on operator | | 2581 | | | designation for forwarding to EM. | | | | | ū ū | | GSFPS- | GS Ktr, GAS | Base | The GS <b>shall</b> collect and report to EM performance measures at a level of | | 2691 | (CCR-01430) | | detail sufficient to assess the margin on a per-process and per-product | | | (00.107) | | basis for product latency and refresh. | | | | | basis for product fatericy and reflesh. | | GSFPS- | GS Ktr, GAS, | Base | The GS <b>shall</b> capture event messages of product distribution events. | | | | Dasc | The Go shan capture event messages of product distribution events. | | 2579 | OSO | | | | | (CCR-01430) | | | | GSFPS- | GAS | | The GS <b>shall</b> process a minimum of 200 (TBR) simultaneous subscription | | 2428 | (CCR-01430) | | service data transfers. | | 2420 | (CCN-01430) | | service data transfers. | | GSFPS- | GAS | | The GS shall notify subscription users when subscribed products are | | | | | | | 2422 | (CCR-01430) | | available at the GOES-R Access Point. (CCR01394) | | | | | | | 00=== | | | T. 00 I II | | GSFPS- | GAS | | The GS <b>shall</b> post the product manifest within 1 second after a product is | | 2424 | (CCR-01430) | | posted to the GOES-R Access Point. | | | , | | · | | GSFPS- | GAS | | The GS <b>shall</b> be capable of transferring data from the GOES-R Access | | 3137 | (CCR-01430) | | Point to users at a minimum combined rate of 500 Mbps (TBR). | | 5157 | (0011-014-00) | | To the to assis at a minimum combined rate of soo mbps (TDIN). | | GSFPS- | OSO | | The GS shall transfer data from the GOES-R Access Point to users at a | | | | | | | 3100 | | | חווווווווווווווווווווווווווווווווווווו | | CSEDS | | | | | | | | 8.5 Product Distribution Storage | | | | | | | GSFPS- | GAS | | The GS <b>shall</b> store L1b and L2+ products, ancillary data, metadata, | | 2303 | (CCR-01430) | | Instrument Calibration Data, and the sample outlier files in a 7-day | | 2000 | (501.01750) | | | | | | | revolving temporary store at the NSOF. (CCR01399) | | CCEDC | CAS | | The CC shall have the conchility to retrieve display, synast and stars for | | GSFPS- | GAS | | The GS <b>shall</b> have the capability to retrieve, display, export, and store for | | 3113 | (CCR-01430) | | the life of the mission operator-selected data from the 7-day revolving | | | | | temporary storage. | | | i e | i | I | | GSFPS-<br>3153<br>GSFPS-<br>2583 | OSO | | The GS shall transfer data from the GOES-R Access Point to users at a minimum combined rate of 500 Mbps (TBR). 8.5 Product Distribution Storage | Effective Date: Date of Last Signature G417-R-FPS-0089 Responsible Organization: GOES-R/Code 417 Version 1.10 This page intentionally left blank. #### **Appendix A: End Product Performance Parameter Tables** Release Number - Subset of the total GOES-R products indicating which products are required for implementation at certain delivery milestones. **Product Geographic Coverage / Conditions** - Product geographic coverage is defined as the size of the area that must be observed in the revisit time in order to complete the product; in the case of CONUS, it also specifies a particular area as well as location. The GOES-R products will be calculated for the coverage areas of the L1b data provided by the instrument subject to the Product Qualifiers. Product Orthogonality / Coverage - Product Orthogonality / Coverage is defined for the Space and Solar Products only and is nominally the equivalent of the Product Geographic Coverage. **Product Vertical Resolution** - Product vertical resolution is defined as layering averaging of the resultant samples corresponding to different heights in the atmosphere; where only one vertical sample is collected, no layer averaging is needed. The GOES-R System will produce the required vertical layering of the GOES-R products employing external data sources if needed. For typical imaging products, the vertical layering is typically over the total column. **Product Horizontal Resolution** - Product horizontal resolution is defined as the finest horizontal spatial element of the product measured at nadir. The GOES-R System will not spatially degrade the product horizontal resolution beyond that of the L1b data of the earth-looking instruments when making Level 2 and higher products, except in the generation of GOES-R products with coarser horizontal resolution. Product Horizontal/Angular Resolution - Product Horizontal/Angular Resolution is defined for the Space and Solar Products only and is nominally the equivalent of the Product Horizontal Resolution. **Product Mapping Accuracy (Product Navigation)** - Product navigation or more generally product mapping accuracy is defined as the accuracy of the registration of the collected data to the appropriate earth or other reference frame. The GOES-R System will geolocate the GOES-R series L1b data (which meets instrument image navigation and registration requirement for earth-looking instruments) to comply with the product mapping accuracy requirements. Product Pointing/Mapping Accuracy - Product Pointing/Mapping Accuracy is defined for the Space and Solar Products only and is the equivalent of the Product Mapping Accuracy. **Product Pointing Knowledge / Mapping Uncertainty** - Product Pointing Knowledge / Mapping Uncertainty is defined for the Space and Solar Products only as the knowledge of the line of sight of the space and solar instruments. **Product Measurement Range** - Product Measurement Range is defined as the range from the minimum to the maximum values over which the product will be measured. Categorical Product -- A product whose output is limited to a set of discrete values. (CCR01326) **Product Measurement Accuracy (non-categorical products)** - Product Measurement Accuracy is defined for non-categorical products as the systematic difference or bias between the derived parameter and truth. It is determined by computing the absolute value of the average of differences between the derived parameter and truth over a statistically significant population of data such that the magnitude of the random error is negligible relative to the magnitude of the systematic error. *(CCR01292)* **Product Measurement Accuracy (categorical products)** - Product Measurement Accuracy for categorical products is defined in terms of the percentage of correct classification over a statistically significant population of data. (CCR01292) **Product Refresh Rate/Coverage Time -** Product Refresh Rate/Coverage Time is defined as the time between the completion of the nth update of the product and the completion of the (n+1)th update of the same product for the user. The GOES-R baseline product tables list refresh times for products. However, ABI data may be produced more frequently than the listed times, particularly due to the different scan modes of ABI. Products that rely on surface observations with product refreshes that are long, compared to the instrument image refresh times, benefit from observations without obscurations caused by clouds. The product refresh is often longer than the coverage time associated with the data collection, as with the GLM in which case the longer of the two is listed for this composite parameter. (CCR01282) Ground Data Latency - Product-dependent baseline maximum time allocated to the GS, defined as: Effective Date: Date of Last Signature G417-R-FPS-0089 Responsible Organization: GOES-R/Code 417 Version 1.10 - a) the time between the receipt of the last image data packet on the ground and delivery to the AWIPS demarcation point in the case of sectorized products, and - b) the time between the receipt of the last image data packet on the ground and the end-point of the GOES-R Access Subsystem in the case of all other products. (CCR01333) **Vendor Allocated Ground Latency** - Product-dependent baseline maximum time allocated to the GS vendor, defined as the time between the arrival of the last data packet of an observation at the intermediate frequency conversion and the arrival of the last bit of a GOES-R product at either: - a) the AWIPS demarcation point in the case of sectorized products, or - b) the ingest point of the GOES-R Access Subsystem in the case of all other products. (CCR01333) Antenna Allocated Ground Latency - Sum of the 1) Baseline maximum time allocated between the receiving of the data in the last packet of the observation at the RF input to the antenna and the intermediate frequency conversion and 2) Baseline maximum time between the intermediate frequency on the transmit side of the GRB transmitter on the ground at CDAS and the intermediate frequency on the received side of the GRB transmitter on the ground at NSOF. (CCR01333) GOES-R Access Subsystem Allocated Ground Latency - Baseline maximum time between the arrival of the last bit of a GOES-R product at the ingest point of the GAS and: - a) the time when the file is ready to be pushed to the external recipient - b) the time when the file is staged and available to be pulled by the external recipient. (CCR01333) **Product Long-Term Stability** - Product Long Term Stability is defined as the deviation in accuracy over a period of time, typically the lifetime of the mission, unless otherwise specified in the product long-term stability values. **Product Measurement Precision (non-categorical products)** - Product measurement precision is the one-sigma standard deviation of the differences between the derived parameters and their corresponding truth over the same population of data used to compute the product measurement accuracy. (CCR01292) Product Measurement Precision (categorical products) - Product Measurement Precision for categorical products is: - a) For three or more categories: defined as the standard deviation of the misclassification error (number of bins away from the correct bin) over a statistically significant population of data. - b) For two categories: not applicable. (CCR01292) **Temporal Coverage Qualifier** - The Temporal Coverage Qualifier provides product-specific limitations to the solar zenith angle coverage of the products. When the term Day is used in the temporal qualifier, Day is defined as solar zenith angles less than or equal to 96 degrees. When the term Night is used in the temporal qualifier, Night is defined as solar zenith angles greater than 96 degrees and includes the period of twilight. **Product Extent Qualifier** - The Product Extent Qualifier provides product specific limitations to the solar zenith angle coverage of the products over which a product can be computed. The use of the term quantitative in any of the product extent qualifiers defines the generation of the product while meeting the threshold product measurement accuracy performance in that region, whereas the use of qualitative in any of the product extent qualifiers defines the generation of the product without meeting the threshold product measurement accuracy performance requirements. For CONUS (3000 km x 5000 km) products and mesoscale (1000 km x 1000 km) products, the product will be computed within the CONUS-sized measurement area and the mesoscale-sized measurement area that falls within the product qualifier limitations. Cloud Cover Conditions Qualifier - The Cloud Cover Conditions Qualifier provides product specific limitations to the cloud cover associated with the threshold accuracy. **Product Statistics Qualifier** - The Product Statistics Qualifier provides product specific limitations, where applicable, to the product generation scene statistics under which the product measurement accuracies apply. # Allocation of Mission Product Latency <sup>\*</sup> Flight Segment Latency is 2 seconds for all products except Solar Imagery: X-Ray, which is 4 sec Figure 2: Allocation of Mission Product Latency (CCR-01365) <sup>\*\*</sup> This latency period includes the satellite transponder time for GRB (<1 millisecond) Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 ### **Appendix A Table 1: Baseline End-Product Sets and Performance Parameters** | | | | | | | | | Append | lix A Table 1 | 1: Baseline E | End-Product Se | ts and Perfori | nance Paran | neters | | | | | | |----------------------------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Aerosol<br>Detection<br>(including<br>Smoke and<br>Dust) | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Total<br>Column | 2 km | 1 km | Binary yes/no<br>detection<br>above<br>threshold 0.2<br>(for aerosol<br>optical<br>thickness) | 20%<br>classification<br>error | 15 min | 15 min | CONUS:<br>806 sec<br>Full Disk:<br>806 sec<br>Mesoscale:<br>806 sec | CONUS:<br>806 sec<br>Full<br>Disk:<br>806 sec | 10% | Atmosphere | Aerosols | | Suspended<br>Matter / Optical<br>Depth | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS &<br>Full Disk | Total<br>Column | 2 km | 1.0 km | 0.04-3.0 in<br>optical depth<br>(retain<br>negative<br>retrievals) | 20% classification error over land, 10% classification error over ocean; 30% error in optical depth | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS:<br>266 sec<br>Full Disk:<br>806 sec | CONUS:<br>266 sec<br>Full<br>Disk:<br>806 sec | 13% | Atmosphere | Aerosols | | Volcanic Ash:<br>Detection and<br>Height | 2 | В | NetCDF<br>McIDAS | 2 | No | 2+ | Full Disk | 3 km (top<br>height) | 2 km | 1.0 km | 0-50 tons/km2 | 2 ton/km2 | 15 min | 15 min | 430 sec | 430 sec | 10% | Atmosphere | Aerosols | | Cloud &<br>Moisture<br>Imagery | 1 | В | NetCDF<br>McIDAS | 54 | Yes | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | 2 km, with<br>finer<br>daytime<br>obser-<br>vations | 1.0 km | Not Applicable | Not<br>Applicable | CONUS: 5<br>min & Full<br>Disk: 15<br>min &<br>Mesoscale:<br>30 sec | CONUS: 5<br>min & Full<br>Disk: 5<br>min | CONUS:<br>50 sec<br>Full Disk:<br>50 sec<br>Mesoscale:<br>23 sec | CONUS:<br>50 sec<br>Full<br>Disk: 50<br>sec | N/A | Atmosphere | Clouds | | Cloud Optical<br>Depth | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS:<br>for optical<br>depth > 1<br>& Full Disk:<br>for optical<br>depth > 1 | Total<br>column | CONUS: 2<br>km &<br>Full Disk: 4<br>km | CONUS: 1<br>km-Full<br>Disk: 2 km | 0.5 - 50 | 20% | CONUS:<br>15 min &<br>Full Disk:<br>15 min | CONUS:<br>15 min &<br>Full Disk:<br>15 min | CONUS:<br>806 sec<br>Full Disk:<br>806 sec | CONUS:<br>806 sec<br>Full<br>Disk:<br>806 sec | 10% | Atmosphere | Clouds | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 | | | | | | | | | Append | lix A Table 1 | 1: Baseline F | End-Product Se | ts and Perfori | nance Parar | neters | | | | | | |-------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Cloud Particle<br>Size Distribution | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Cloud Top | 2 km | 1.0 km | 0 - 50 μm | 4 µm for<br>liquid phase,<br>10 µm for ice<br>phase | CONUS: 5<br>min, & Full<br>Disk: 15<br>min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min, & Full<br>Disk: 15<br>min | CONUS:<br>266 sec<br>Full Disk:<br>806 sec<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>Full<br>Disk:<br>806 sec | 2 um | Atmosphere | Clouds | | Cloud Top<br>Phase | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Cloud Top | 2 km | 1.0 km | Liquid /solid /<br>supercooled /<br>mixed | 20%<br>classification<br>error | CONUS: 5<br>min & Full<br>Disk: 15<br>min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS:<br>266 sec<br>Full Disk:<br>806 sec<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>Full<br>Disk:<br>806 sec | 20% | Atmosphere | Clouds | | Cloud Top<br>Height | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Cloud top | CONUS:<br>10 km &<br>Full Disk:<br>10 km &<br>Mesoscale:<br>4 km | CONUS: 5<br>km-Full<br>Disk: 5 km-<br>Mesoscale:<br>2 km | CONUS: 100m<br>- 300hPa &<br>Full Disk: 0 -<br>15 km &<br>Mesoscale: 0 -<br>20 km | 500 m for<br>low level<br>clouds with<br>emissivity ><br>0.5 | CONUS:<br>60 min, &<br>Full Disk:<br>60 min &<br>Mesoscale:<br>5 min | CONUS:<br>60 min, &<br>Full Disk:<br>60 min | CONUS:<br>266 sec,<br>Full Disk:<br>806 sec<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec,<br>Full<br>Disk:<br>806 sec | 1.3 km | Atmosphere | Clouds | | Cloud Top<br>Pressure | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS &<br>Full Disk | Cloud top | 10 km | 5 km | CONUS: 100-<br>1000 hPa<br>Full Disk: 100 -<br>1000 mb | 100 mb for low level clouds with emissivity > 0.5 | 60 min | 60 min | CONUS:<br>536 sec,<br>Full Disk:<br>806 sec | CONUS:<br>536 sec,<br>Full<br>Disk:<br>806 sec | 10 mb | Atmosphere | Clouds | | Cloud Top<br>Temperature | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | Full Disk &<br>Mesoscale | At Cloud<br>Tops | 2 km | 1.0 km | 180-300 K | 1.0 K for known emissivity = 1.0 and known atmosphere and low clouds; 4 K for low level cloud emissivity > 0.5 | Full Disk:<br>15 min &<br>Mesoscale:<br>5 min | Full Disk:<br>15 min | Full Disk:<br>806 sec<br>Mesoscale:<br>266 sec | Full<br>Disk:<br>806 sec | 1 K | Atmosphere | Clouds | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 **Appendix A Table 1: Baseline End-Product Sets and Performance Parameters** Product Horizontal Resolution (Product Pointing/ Mapping Accuracy for Space Weather) Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) Product Vertical Resolution (Product Horizontal / Angular Resolution for Space Weather) Product Measurement Range Product Geographic Coverage (Product Orthogonality/Coverage for Space Weather) Product Baseline or Product Product Refresh Rate/ Coverage Time (B) (ABI Mode 3) Number of End-Products Refresh Rate / Coverage Time (B) Mode 4 Output Format for each Coverage Product Measurement Accuracy Product Measurement Precision Product Set Number Product Sub-type (B) Mode 3 VAGL (B) Mode Product Level RBU Product Product Type VAGL ( В NetCDF No 2+ Full Disk Dvorak 5 m/s over 30 min Full Disk: Full Clouds Hurricane 2 km 1.0 km 30 min 5 m/s over Not Atmosphere McIDAS Applicable hurricane 806 sec Disk: the ocean Intensity ocean intensity scale 806 sec values of 4 - 8 or leading to wind speeds of 33.4 m/s (65 knots) to 87.5 m/s (170 knots) Lightning NetCDF 12 Yes 2+ CONUS & Surface to 10 km 5 km Real time 70% total continuous continuous CONUS: CONUS: 5% Atmosphere Clouds Detection: 1) McIDAS Full Disk & strikes 50 sec 50 sec cloud top Full Disk: Events and Mesoscale detection Full 2)Flashes 50 sec Disk: 50 Mesoscale: sec 50 sec Rainfall 2 NetCDF 2 No 2+ Full Disk 2 km 1.0 km 0-100 mm/hr 2 mm/hr at 15 min 15 min Full Disk: Full Atmosphere Precipitation 2 mm/hr at Rate/QPE McIDAS Applicable 30 mm/hr 266 sec Disk: 30 mm/hr rate, with 266 sec rate, with higher higher values at values at higher rates higher rates | | | | | | | | | Append | lix A Table 1 | 1: Baseline I | End-Product Se | ts and Perfori | nance Parar | neters | | | | | | |-------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Legacy Vertical<br>Moisture Profile | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS - Clear and Above Cloud Regions only & Full Disk - Clear and Above Cloud Regions only & Mesoscale - Clear and Above Cloud Regions only & Regions only | Reflects<br>layering<br>of<br>Numerical<br>Weather<br>Prediction<br>Models;<br>inherent<br>vertical<br>resolution<br>is only 3<br>to 5 km | 10 km | 5 km | 0 - 100% | Sfc-500 mb:<br>18 % relative<br>humidity &<br>500-300 mb:<br>18% relative<br>humidity &<br>300-100 mb:<br>20% relative<br>humidity | Full Disk: | Full Disk :<br>60 min &<br>CONUS:<br>30 min | CONUS:<br>266 sec &<br>Full Disk:<br>266 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>266 sec | Sfc-500 mb:<br>18 % relative<br>humidity<br>500-300 mb:<br>18% relative<br>humidity<br>300-100 mb:<br>20% relative<br>humidity | Atmosphere | Profiles | | | | | | | | | | Append | lix A Table 1 | 1: Baseline H | End-Product Se | ts and Perfori | nance Parar | neters | | | | | | |----------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Legacy Vertical<br>Temperature<br>Profile | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS - Clear and Above Cloud Regions only & Full Disk - Clear and Above Cloud Regions only & Mesoscale - Clear and Above Cloud Regions only & Regions | Reflects<br>layering<br>of<br>Numerical<br>Weather<br>Predic-<br>tion<br>Models;<br>inherent<br>vertical<br>resolution<br>is only 3<br>to 5 km | 10 km | 5 km | 180 - 320 K | 0.1 K<br>improvement<br>over<br>numerical<br>weather<br>prediction<br>model<br>analysis | Full Disk :<br>60 min &<br>CONUS:<br>30 min &<br>Mesoscale:<br>5 min | Full Disk :<br>60 min &<br>CONUS:<br>30 min | CONUS:<br>266 sec &<br>Full Disk:<br>266 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>266 sec | 0.1 K<br>improvement<br>over<br>numerical<br>weather<br>prediction<br>model<br>analysis | Atmosphere | Profiles | | Derived Stability<br>Indices (5<br>indices: CAPE,<br>Lifted Index, K-<br>index, Showalter<br>Index, Total<br>Totals) | 2 | В | NetCDF<br>McIDAS | 30 | No | 2+ | CONUS &<br>Mesoscale | Not<br>Applicable | CONUS: 4<br>km &<br>Mesoscale:<br>4 km | 2 km | Lifted Index: 10 to 40 K & CAPE: 0 to 5000 J/kg & Showalter index: >4 to - 10 K & Total totals Index: - 43 to > 56 & K index: 0 to 40 | Lifted Index:<br>+/- 2.0 K &<br>CAPE: 1000<br>J/ kg &<br>Showalter<br>index: +/- 2<br>K &<br>Total totals<br>Index: +/-1<br>&<br>K index: +/-2 | CONUS:<br>30 min &<br>Mesoscale:<br>5 min | CONUS:<br>30 min | CONUS:<br>159 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>159 sec | Lifted Index:<br>+/- 6.5 K &<br>CAPE: 2500<br>J/ kg &<br>Showalter<br>index: +/-<br>6.5 K &<br>Total totals<br>Index: +/-4 K<br>&<br>K index: +/-<br>5 K | Atmosphere | Profiles | | | | | | | | | | Append | lix A Table 1 | 1: Baseline E | End-Product Se | ts and Perforr | mance Parar | neters | | | | | | |--------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Total<br>Precipitable<br>Water | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS: Clear and Above Cloud Regions Only & Full Disk: Clear and Above Cloud Regions Only & Mesoscale: Clear and Above Cloud Regions Only & Mesoscale: Clear and Above Cloud Regions Only | Not<br>Applicable | 10 km | 2 km | 0 - 100 mm | 10%<br>compared to<br>ground<br>based truth | CONUS:<br>30 min &<br>Full Disk:<br>60 min &<br>Mesoscale:<br>5 min | CONUS:<br>30 min &<br>Full Disk:<br>60 min | CONUS:<br>266 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>806 sec | 3 mm | Atmosphere | Profiles | | Clear Sky Masks | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | 2 km | 1 km | 0 - 1 Binary | 13%<br>probability of<br>incorrect<br>detection | CONUS:<br>15 min &<br>Full Disk:<br>15 min &<br>Mesoscale:<br>5 min | CONUS:<br>15 min &<br>Full Disk:<br>15 min | CONUS:<br>266 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>&<br>Full<br>Disk:<br>806 sec | 10% | Atmosphere | Radiances | G417-R-FPS-0089 | | | | | | | | Append | lix A Table | 1: Baseline H | End-Product Se | ts and Perfori | mance Parar | neters | | | | | | |------------------------------------------|--------------------|------------------------------------------------------------------------------|------------------------|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product Outlook 13 or 2) Output Format for each Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Radiances | 1 | B NetCDF McIDAS | 6 | Yes | 1b | CONUS:<br>Clear and<br>Cloud<br>Regions<br>only & Full<br>Disk: Clear<br>and Cloud<br>Regions<br>only &<br>Mesoscale:<br>Clear and<br>Cloud<br>Regions<br>only | Not<br>Applicable | Individual<br>channel<br>resolutions<br>(0.5 km,<br>1.0 km,<br>and 2.0<br>km) | One half of<br>individual<br>channel<br>resolutions<br>(0.5 km,<br>1.0 km,<br>and 2.0<br>km) | 180K-320K<br>when<br>converted to<br>brightness<br>temperature<br>units | 1.0 K when<br>converted to<br>in brightness<br>temperature<br>units for<br>known<br>emissivity | CONUS:<br>15 min &<br>Full Disk:<br>15 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 5<br>min | CONUS:<br>266 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>806 sec | 0.4 K when<br>converted to<br>in brightness<br>temperature<br>units for<br>known<br>emissivity | Atmosphere | Radiances | | Downward Solar<br>Insolation:<br>Surface | 2 | B NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | CONUS:<br>25 km &<br>Full Disk:<br>50 km &<br>Mesoscale:<br>5 km | CONUS: 2<br>km-Full<br>Disk: 4 km-<br>Mesoscale:<br>1 km | 0-1500 W/m2 | +/- 60 W/m2<br>at high end<br>of range for<br>known cloud<br>fraction<br>(1500 W/m2)<br>& +/- 40<br>W/m2 at<br>typical value/<br>mid-point for<br>known cloud<br>fraction ( 350<br>W/m2) | 60 min | 60 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec &<br>Mesoscale:<br>3236 sec | CONUS:<br>3236<br>sec &<br>Full<br>Disk:<br>3236<br>sec | 30 W/m2 for<br>known cloud<br>fraction | Atmosphere | Radiation | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 G417-R-FPS-0089 Version 1.10 | | | | | | | | | Append | lix A Table | 1: Baseline F | End-Product Se | ts and Perfori | nance Parai | neters | | | | | | |------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Reflected Solar<br>Insolation: TOA | 2 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS & Full Disk | Not<br>Applicable | CONUS:<br>25 km &<br>Full Disk:<br>100 km | CONUS: 2<br>km-Full<br>Disk: 4 km | 0-1300 W/m2 | CONUS: +/- 60 W/m2 at high end of range (1300 W/m2) +/- 40 W/m2 at typical value/mid-point (350 W/m2) & Full Disk: +/- 60 W/m2 at high end of range (1500 W/m2) +/- 40 W/m2 at typical value/mid-point (350 W/m2) | 60 min | 60 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec | CONUS:<br>3236<br>sec &<br>Full<br>Disk:<br>3236<br>sec | 15 W/m2 | Atmosphere | Radiation | G417-R-FPS-0089 | | | | | | | | | Append | lix A Table 1 | 1: Baseline I | End-Product Se | ts and Perfori | mance Parar | neters | | | | | | |--------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Derived Motion<br>Winds | 2 | В | NetCDF<br>McIDAS | 36 | No | 2+ | CONUS & Full Disk & Mesoscale | Cloud<br>Motion<br>Vector<br>winds: At<br>cloud<br>tops;<br>Clear-Sky<br>Water<br>Vapor<br>winds:<br>200 mb | 10 km | 5 km | Speed: 0-300<br>kts (0 to 155<br>m/s) &<br>Direction: 0 to<br>360 degrees | Speed: 6<br>m/s &<br>Direction: <<br>20 degrees | CONUS: 15 min (based on 3 sequential images 5 minutes apart) & Full Disk: 60 min (based single set of 3 sequential images 5 minutes apart) & Mesoscale : 15 min (based on 3 sequential 5 minute images of the same area) | CONUS:<br>15 min<br>(based on<br>3<br>sequential<br>images 5<br>minutes<br>apart) &<br>Full Disk:<br>15 min<br>(based<br>single set<br>of 3<br>sequential<br>images 5<br>minutes<br>apart) | CONUS:<br>806 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>806 sec | CONUS:<br>806 sec<br>& Full<br>Disk:<br>806 sec | 2 m/sec | Atmosphere | Winds | | Fire / Hot Spot<br>Characterization: | 2 | В | NetCDF<br>McIDAS | 8 | No | 2+ | CONUS &<br>Full Disk | Not<br>Applicable | 2 km | 1.0 km | 275 to 400 K | 2.0 K within<br>dynamic<br>range | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS:<br>266 sec &<br>Full Disk:<br>806 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>806 sec | 2.0 K | Land | Land | | | | | | | | | | Append | lix A Table | 1: Baseline E | End-Product Se | ts and Perfori | nance Parar | neters | | | | | | |---------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Land Surface<br>(Skin)<br>Temperature | 2 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | CONUS: 2<br>km & Full<br>Disk: 10<br>km &<br>Mesoscale:<br>2 km | CONUS: 1<br>km-Full<br>Disk: 5 km-<br>Mesoscale:<br>1 km | CONUS: 233-<br>333 K<br>Full Disk: 230-<br>330 K<br>Mesoscale:<br>213-333 K | 2.5 K with<br>known<br>emissivity,<br>known<br>atmospheric<br>correction,<br>and 80%<br>channel<br>correlation; 5<br>K otherwise | 60 min | 60 min | CONUS:<br>3236 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>159 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>806 sec | 2.3 K | Land | Land | | Snow Cover | 2 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | 2 km | 1.0 km | Binary yes / no<br>detection | 30% | 60 min | 60 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec &<br>Mesoscale:<br>3236 sec | CONUS:<br>3236<br>sec &<br>Full<br>Disk:<br>3236<br>sec | 5% | Land | Land | | Sea Surface<br>Temps | 2 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS<br>and US<br>navigable<br>waters thru<br>EEZ & Full<br>Disk &<br>Mesoscale | Not<br>Applicable | 2 km | 1.0 km | CONUS: 270<br>to 313 K<br>Full Disk: 271-<br>313 K<br>Mesoscale:<br>270-313 K | 2.1 K with<br>known<br>emissivity,<br>known<br>atmospheric<br>correction,<br>and 80%<br>channel<br>correlation;<br>3.1 K<br>otherwise | CONUS:<br>60 min &<br>Full Disk:<br>60 min &<br>Mesoscale:<br>60 min | CONUS:<br>60 min &<br>Full Disk:<br>60 min | CONUS:<br>806 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>806 sec | CONUS:<br>806 sec<br>& Full<br>Disk:<br>806 sec | 1.0 K | Ocean | Ocean | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 | | | | | | | | | Append | lix A Table 1 | 1: Baseline I | End-Product Se | ts and Perfor | mance Parai | neters | | | | | | |------------------------------------------------------------------------|--------------------|-----------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|--------------------------------------------|-----------------|-----------------|------------------------------------------------------------------------------------------------|------------------|------------------------| | Name | Product Set Number | Product Baseline or Product | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Energetic Heavy<br>lons | 1 | В | NetCDF | 1 | Yes | 1b | 1 direction | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | 10 to 200<br>MeV/n-4 mass<br>groups: He,<br>(C,N,O), Ne-S,<br>& Fe | 25% | 5 min | 5 min | 267 sec | 267 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Magnetospheric<br>Electrons and<br>Protons: Low<br>Energy | 1 | В | NetCDF | 1 | Yes | 1b | 5<br>directions | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | Electron and<br>Protons: 30 eV<br>to 30 keV | 25% | 30 sec | 30 sec | 51 sec | 51 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Magnetospheric<br>Electrons and<br>Protons:<br>Medium & High<br>Energy | 1 | В | NetCDF | 1 | Yes | 1b | 5<br>directions | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | Electrons: 30<br>keV to 4 MeV<br>Protons: 30<br>keV to 1 MeV | 25% | 30 sec | 30 sec | 51 sec | 51 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Solar and<br>Galactic Protons | 1 | В | NetCDF | 1 | Yes | 1b | 2<br>directions | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | 1 MeV to 500<br>MeV &<br>Differential<br>Measurements | 25% | 1 min | 1 min | 51 sec | 51 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Geomagnetic<br>Field | 1 | В | NetCDF | 1 | Yes | 1b | 3-axis 0.5° | Not<br>Applicable | +/- 0.25° | +/- 10 | > = +/- 512<br>nT/axis (3-axis<br>vector) | 1.0 nT (per<br>axis) | 2 samples<br>per sec | 2 samples<br>per sec | 1.8 sec | 1.8 sec | 0.016 nT | Space &<br>Solar | Magnetic<br>Field | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 Responsible Organization: GOES-R/Code 417 Versio | | | | | | | | Append | lix A Table | 1: Baseline I | End-Product Se | ts and Perfor | mance Paran | neters | | | | | | |-------------------------|--------------------|-----------------------------------------------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------|--------------------------------------------|-----------------|-----------------|----------------------------------|------------------|------------------| | Name | Product Set Number | Product Baseline or Product Oution (4 or 2) Output Format for each Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage for<br>Space Weather) | Product Vertical Resolution<br>(Product Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product Pointing/<br>Mapping Accuracy for Space<br>Weather) | Product Mapping Accuracy<br>(Product Pointing Knowledge<br>/ Mapping Uncertainty for<br>Space Weather) | Product Measurement Range | Product Measurement<br>Accuracy | Product Refresh Rate/<br>Coverage Time (B) (ABI<br>Mode 3) | Refresh Rate / Coverage<br>Time (B) Mode 4 | VAGL (B) Mode 3 | VAGL (B) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Solar Flux: EUV | 1 | B NetCDF | 1 | Yes | 1b | Solar Disk<br>(40 arcmin) | Not<br>Applicable | Not<br>Applicable | +/-2 arcmin | 0.5x Sol Min ,<br>10x Sol Max | 20% | 30 sec | 30 sec | 24 sec | 24 sec | 2% | Space &<br>Solar | Solar | | Solar Flux: X-<br>Ray | 1 | B NetCDF | 1 | Yes | 1b | Solar Disk<br>(40 arcmin) | Not<br>Applicable | Not<br>Applicable | +/-2 arcmin | XRSA: 5x10-9<br>to 5x10-4<br>W/m2 XRSB:<br>2x10-8 to<br>2x10-3 W/m2 | +/- 20% | 3 sec | 3 sec | 1.8 sec | 1.8 sec | 2% | Space &<br>Solar | Solar | | Solar Imagery:<br>X-Ray | 1 | B NetCDF<br>FITS | 2 | Yes | 1b | 0.0-1.3<br>Solar Radii | 7.0 arcsec | Stability during 24 hours: 1.0 arcmin of sun center (N-S, E-W) (1 sigma)- 3.0 arcmin of sun center (N-S, E-W) (3 sigma) & Stability during 60 seconds: 2.0 arc seconds of sun center (E-W, N-S) (1 sigma)- 6.0 arcsec of sun center (E-W, N-S) (3 sigma) | +/-2.5<br>arcsec | Radiance: 0.3-<br>10^6<br>ph/cm2/arcsec/<br>sec &<br>Temperature:<br>1 to 10 MK | +/-40% in radiance | Image: <2<br>min &<br>Temp: < 6<br>min | Image: <2<br>min &<br>Temp: <6<br>min | <50 sec | <50 sec | +/-40% in radiance | Space &<br>Solar | Solar | Effective Date: Date of Last Signature G417-R-FPS-0089 Version 4.40 Responsible Organization: GOES-R/Code 417 Version 1.10 NOTE: There are 54 KPP Cloud and Moisture Imagery End-Products (48 single band End-Products in NETCDF format at the resolution native to each band and one multiband product at 2 km resolution in both NETCDF & McIDAS Area file formats). This number is arrived at as follows: Single band products: 16 products \* 1 format (NETCDF) \* 3 coverage areas (Full Disk, CONUS, Mesoscale) Multiband products: 1 product \* 2 formats (NETCDF and McIDAS Area)\* 3 coverage areas (Full Disk, CONUS, Mesoscale) (CCR01313, CCR01368) NOTE: The number of Derived Motion Winds End-Products is derived from 6 unique outputs multiplied by 3 coverage areas in two formats each. Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 ### **Appendix A Table 2: Product Qualifiers** | | | Appendix A Table 2: Product Qualifier | | | |----------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------| | Observational Requirements | Temporal Coverage Qualifiers (Threshold) | Product Extent Qualifier (Threshold) | Cloud Cover Conditions Qualifier (Threshold) | Product Statistics Qualifier (Threshold) | | Observational Requirements:<br>ATMOSPHERE | | | | | | AEROSOLS | | | | | | Aerosol Detection (including Smoke and Dust) | Day | Quantitative out to at least 60 degrees LZA (Threshold) and qualitative at larger LZA | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | | Aerosol Particle Size | Day | Quantitative out to at least 60 degrees LZA (Threshold) and qualitative at larger LZA | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | | Suspended Matter / Optical Depth | Daytime at a minimum | Quantitative out to at least 60 degrees LZA (Threshold) and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | | Volcanic Ash: Detection and Height | Day and night | Quantitative out to at least 60 degrees LZA (Threshold) and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over volcanic ash cases | | CLOUDS | | | | | | Aircraft Icing Threat | Day and night | Quantitative out to at least 60 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Cloud Ice Water Path | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of limited clouds with optical depths between 1.0 and 60 (day) | Over specified geographic area | | Cloud Imagery: Coastal | Day and night | Not applicable | In presence of clear air and clouds | Over specified geographic area | | Cloud Layers / Heights and Thickness | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | In presence of clouds with optical depth > 1. Clear conditions down to cloud top associated with threshold accuracy. | Over specified geographic area | | Cloud Liquid Water | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of limited clouds with optical depths between 2.0 and 60 (day) | Over specified geographic area | | Cloud & Moisture Imagery | Day and night | Not applicable | In presence of clear air and clouds | Over specified geographic area | | Cloud Optical Depth | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of clouds with optical depth > 1 | Over specified geographic area | | Cloud Particle Size Distribution | Day and night | Day and night; quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of clouds with optical depths >2 and <60 | Over specified geographic area | | Cloud Top Phase | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of clouds with optical depth > 1. Clear conditions down to cloud top associated with threshold accuracy. | Over specified geographic area | | Cloud Top Height | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy. | Over specified geographic area | | Cloud Top Pressure | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | In presence of clouds with optical depth > 1. Clear conditions down to cloud top associated with threshold accuracy. | Over specified geographic area | | Cloud Top Temperature | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of clouds with optical depth > 1. Clear conditions down to cloud top associated with threshold accuracy. | Over specified geographic area | | Cloud Type | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | In presence of clouds with optical depth > 1. Clear conditions down to cloud top associated with threshold accuracy. | Over specified geographic area | | Convective Initiation | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. | | | <b>Appendix A Table 2: Product Qualifiers</b> | <b>S</b> | | |---------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------| | Observational Requirements | Temporal Coverage Qualifiers (Threshold) | Product Extent Qualifier (Threshold) | Cloud Cover Conditions Qualifier (Threshold) | Product Statistics Qualifier (Threshold) | | Enhanced "V" / Overshooting Top Detection | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over enhanced V / overshooting top cases | | Hurricane Intensity | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over hurricane cases | | Lightning Detection: 1) Events and 2)Flashes | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | Cloud cover conditions permitting observation of lightning associated with threshold accuracy | Over lightning cases | | Low Cloud and Fog | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions down to feature of interest<br>(no high clouds obscuring fog) associated<br>with threshold accuracy | Over low cloud and fog cases with at least 42% occurrence in the region | | Turbulence | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over turbulence cases with at least 25% occurrence in surrounding regions | | Visibility | Day | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | | PRECIPITATION | | | | | | Probability of Rainfall | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | N/A | Over rain cases and mesoscale-sized surrounding regions | | Rainfall Potential | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | N/A | Over rainfall cases | | Rainfall Rate/QPE | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | N/A | Over rain cases and mesoscale-sized surrounding regions | | PROFILES | | , | | | | Legacy Vertical Moisture Profile | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Legacy Vertical Temperature Profile | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Derived Stability Indices (5 indices: CAPE,<br>Lifted Index, K-index, Showalter Index, Total<br>Totals) | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Total Precipitable Water | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | | Total Water Content | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Only clear regions and optically thin, single layer clouds associated with threshold accuracy | Over specified geographic area | | RADIANCES | | | , | | | Clear Sky Masks | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Radiances | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | RADIATION | | | | | | Absorbed Shortwave Radiation: Surface | Day | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Downward Longwave Radiation: Surface | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Not applicable | Over specified geographic area | | | | Appendix A Table 2: Product Qualifier | rs | | |------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------| | Observational Requirements | Temporal Coverage Qualifiers (Threshold) | Product Extent Qualifier (Threshold) | Cloud Cover Conditions Qualifier (Threshold) | Product Statistics Qualifier (Threshold) | | Downward Solar Insolation: Surface | Day for SZA values greater than 25 degrees | Quantitative out to at least 70 degrees LZA and qualitative beyond | Not applicable | Over specified geographic area | | Reflected Solar Insolation: TOA | Day | Quantitative out to at least 70 degrees LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Upward Longwave Radiation: Surface | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Upward Longwave Radiation: TOA | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | TRACE GASES | | | , | | | Ozone Total | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | SO2 Detection | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | WINDS | | | <u> </u> | | | Derived Motion Winds | Day and night | Quantitative out to at least 62 degrees LZA and qualitative beyond | Clear conditions down to feature of interest associated with threshold accuracy | Over specified geographic area | | Observational Requirements: LAND | | | | | | Fire / Hot Spot Characterization: | Day and night | Quantitative out to at least 65 degrees LZA and qualitative beyond | If feature is obscured by thick clouds, product will not meet threshold measurement accuracy | Over specified geographic area | | Flood/Standing Water | Day with Sun at 67 degree solar zenith angle | Quantitative out to at least 67 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Ice Cover/ Landlocked | Day with Sun at 67 degree solar zenith angle | Quantitative out to at least 67 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Land Surface (Skin) Temperature | Day and night | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Snow Cover | Sun at 67 degree daytime solar zenith angle | Quantitative out to at least 55 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Snow Depth | Sun at 67 degree daytime solar zenith angle | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Surface Albedo | Sun at 67 degree daytime solar zenith angle | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Surface Emissivity | Sun at 67 degree daytime solar zenith angle | Quantitative out to at least 70 degrees LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Vegetation Fraction: Green | Sun at 67 degree daytime solar zenith angle | Quantitative out to at least 55 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Vegetation Index | Sun at 67 degree daytime solar zenith angle | Quantitative out to at least 70 degrees LZA and qualitative beyond | Clear conditions associated with threshold accuracy | Over specified geographic area | | Observational Requirements: OCEAN | | | | | | Currents | Day and night | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Currents: Offshore | Day and night | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Sea & Lake Ice: Age | Sun out to 67 degree daytime solar zenith angle | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. | | | Appendix A Table 2: Product Qualifier | rs | | |---------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------| | Observational Requirements | Temporal Coverage Qualifiers (Threshold) | Product Extent Qualifier (Threshold) | Cloud Cover Conditions Qualifier (Threshold) | Product Statistics Qualifier (Threshold) | | Sea & Lake Ice: Concentration | Sun out to 67 degree daytime solar zenith angle | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Sea & Lake Ice: Extent | Sun out to 67 degree daytime solar zenith angle | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Sea & Lake Ice: Motion | Sun out to 67 degree daytime solar zenith angle | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Sea Surface Temps | Day and night | Quantitative out to at least 67 degrees LZA and qualitative at larger LZA | Clear conditions associated with threshold accuracy | Over specified geographic area | | Observational Requirements: SPACE AND SOLAR | | | | | | ENERGETIC PARTICLES | | | | | | Energetic Heavy Ions | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | Magnetospheric Electrons and Protons: Low Energy | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | Magnetospheric Electrons and Protons:<br>Medium & High Energy | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | Solar and Galactic Protons | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | MAGNETIC FIELD | | | | | | Geomagnetic Field | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | SOLAR | | | | | | Solar Flux: EUV | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | Solar Flux: X-Ray | Not Applicable | Not Applicable | Not Applicable | Not Applicable | | Solar Imagery: X-Ray | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 ## **Appendix A Table 3: Option 2 End-Product Sets and Performance Parameters** | | | | | | | | | Appendix | A Table 3: Op | tion 2 End-P | roduct Sets and I | Performance Pa | arameters | _ | | | | | | |--------------------------------------------|--------------------|------------------------------------------------|------------------------------------|------------------------|-------------|---------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|----------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate / Coverage<br>Time Option (Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated Ground<br>Latency (O2) Mode 3 | Vendor Allocated Ground<br>Latency (O2) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Aerosol Particle<br>Size | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Total Column | 2 km | 1.0 km | Fine/Coarse<br>Angstrom<br>exponent range:-<br>1 to +3 | Fine/Coarse<br>Angstrom<br>exponent: 0.3<br>over ocean<br>and land | 15 min | 5 min | 266 sec | 266 sec | 0.15 | Atmosp<br>here | Aerosols | | Aircraft Icing<br>Threat | 4 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Cloud top | 10 km | 5 km | None, Unknown,<br>Light, Moderate,<br>or Severe | 2 categories | 60 min | 5 min | 806 sec | 806 sec | 50%<br>classification<br>error | Atmosp<br>here | Clouds | | Cloud Ice<br>Water Path | 3 | O2 | NetCDF<br>McIDAS | 6 | N<br>o | 2+ | CONUS: for limited cloudiness & Full Disk: for limited cloudiness & Mesoscale: for limited cloudiness | SFC - 20 km | 2 km | 1.0 km | 0-1 mm (Day) | Greater of 0.1<br>mm or 30%<br>during the day | CONUS: 5<br>min & Full<br>Disk: 15 min<br>&<br>Mesoscale:<br>5 min | CONUS:<br>5 min &<br>Full Disk:<br>5 min | CONUS: 50<br>sec &<br>Full Disk:<br>159 sec &<br>Mesoscale:<br>50 sec | CONUS:<br>50 sec &<br>Full Disk:<br>159 sec | 30% | Atmosp<br>here | Clouds | | Cloud Imagery:<br>Coastal | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Coastal: US<br>navigable<br>waters thru<br>EEZ | Not<br>Applicable | Day: 1 km;<br>Night: 2 km | < = 1 km | Not Applicable | Not Applicable | 180 min | 5 min | Coastal:<br>806 sec | Coastal:<br>806 sec | N/A | Atmosp<br>here | Clouds | | Cloud Layers /<br>Heights and<br>Thickness | 3 | O2 | NetCDF<br>McIDAS | 6 | N<br>o | 2+ | CONUS & Full<br>Disk &<br>Mesoscale | 1 cloud layer | CONUS: 10<br>km &<br>Full Disk: 10<br>km &<br>Mesoscale: 4<br>km | CONUS: 5<br>km, -<br>Full Disk: 5<br>km, -<br>Mesoscale:<br>2 km | Thickness: only<br>by general cloud<br>type.<br>Heights of up to<br>1 layers | Thickness:<br>70% correct<br>typing<br>Height: By<br>general cloud<br>type | CONUS: 60<br>min & Full<br>Disk: 60 min<br>&<br>Mesoscale:<br>5 min | CONUS:<br>5 min &<br>Full Disk:<br>5 min | CONUS:<br>806 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>806 sec<br>&<br>Full Disk:<br>806 sec | Thickness:<br>50% in<br>thickness;<br>Heights: 30%<br>in height | Atmosp<br>here | Clouds | | Cloud Liquid<br>Water | 3 | O2 | NetCDF<br>McIDAS | 6 | N<br>o | 2+ | CONUS & Full<br>Disk &<br>Mesoscale | Total Column | 2 km | 1.0 km | 0 - 1 mm | Day: Greater<br>of 0.1 mm or<br>30% | CONUS: 5<br>min & Full<br>Disk: 30<br>min &<br>Mesoscale:<br>5 min | CONUS:<br>5 min &<br>Full Disk:<br>5 min | CONUS:<br>266 sec &<br>Full Disk:<br>159 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>&<br>Full Disk:<br>159 sec | 30% | Atmosp<br>here | Clouds | | | | | | | | | | Appendix | A Table 3: Op | otion 2 End-P | roduct Sets and I | Performance Pa | arameters | | | | | | | |-------------------------------------------------|--------------------|------------------------------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|----------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate / Coverage<br>Time Option (Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated Ground<br>Latency (O2) Mode 3 | Vendor Allocated Ground<br>Latency (O2) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Cloud Type | 3 | O2 | NetCDF<br>McIDAS | 6 | N<br>o | 2+ | CONUS & Full<br>Disk &<br>Mesoscale | Not<br>Applicable | CONUS: 10<br>km & Full<br>Disk: 2 km &<br>Mesoscale: 2<br>km | CONUS: 5<br>km-Full<br>Disk: 1 km-<br>Mesoscale:<br>1 km | 7 types | Probability of correct typing of 60% | CONUS: 15<br>min & Full<br>Disk: 15 min<br>&<br>Mesoscale:<br>15 min | CONUS:<br>5 min &<br>Full Disk:<br>5 min | CONUS:<br>536 sec &<br>Full Disk:<br>159 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>536 sec<br>&<br>Full Disk:<br>159 sec | 20% | Atmosp<br>here | Clouds | | Convective<br>Initiation | 3 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS &<br>Mesoscale | Not<br>Applicable | 2 km | 1.0 km | Binary Yes/no<br>detection | 70%<br>probability of<br>correct<br>detection | CONUS: 5<br>min &<br>Mesoscale:<br>5 min | 5 min | CONUS:<br>159 sec &<br>Mesoscale:<br>159 sec | CONUS:<br>159 sec | 5% | Atmosp<br>here | Clouds | | Enhanced "V" /<br>Overshooting<br>Top Detection | 4 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS &<br>Mesoscale | Not<br>Applicable | 2 km | 1.0 km | 0 - 1 Binary<br>(160 - 270 K) | 10 %<br>Detection<br>Error (1 K Top) | 5 min | 5 min | CONUS:<br>159 sec &<br>Mesoscale:<br>159 sec | CONUS:<br>159 sec | 5% | Atmosp<br>here | Clouds | | Low Cloud and Fog | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | 0.5 km<br>(depth) | 2 km | 1.0 km | Fog/No Fog | 70% Correct<br>Detection | 15 min | 5 min | Full Disk:<br>159 sec | Full Disk:<br>: 159<br>sec | 5% | Atmosp<br>here | Clouds | | Turbulence | 3 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | Full Disk &<br>Mesoscale | SFC - 100<br>mb | 2 km | 1.0 km | Binary<br>(moderate or<br>greater is<br>detected) above<br>boundary layer | Correct<br>detection 75% | Full Disk: 15<br>min &<br>Mesoscale:<br>5 min | Full Disk:<br>5 min | Full Disk:<br>159 sec &<br>Mesoscale:<br>266 sec | Full Disk:<br>159 sec | 50% | Atmosp<br>here | Clouds | | Visibility | 4 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Not<br>Applicable | 10 km | 5 km | Clear (vis ≥ 30 km) Moderate (10 km ≤ Vis < 30 km) Low (2 km ≤ vis < 10 km); Poor (vis < 2 km) (under the conditions of clear up through clouds of only layer) | Correct<br>classification<br>80% | Full Disk: 60<br>min | Full Disk:<br>5 min | Full Disk:<br>806 sec | Full Disk:<br>806 sec | 15% | Atmosp<br>here | Clouds | | | | | | | | | | Appendix | A Table 3: Op | otion 2 End-P | roduct Sets and 1 | Performance P | arameters | | | | | | | |------------------------------------------------|--------------------|------------------------------------------------|------------------------------------|------------------------|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------|-------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate / Coverage<br>Time Option (Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated Ground<br>Latency (O2) Mode 3 | Vendor Allocated Ground<br>Latency (O2) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Probability of | 4 | O2 | NetCDF | 2 | N | 2+ | Full Disk | Not | 2 km | 1.0 km | 0 to 100% | 25% | 15 min | 5 min | Full Disk: | Full Disk: | 40% | Atmosp | Precipitat | | Rainfall<br>Rainfall | 4 | O2 | McIDAS<br>NetCDF | 2 | o<br>N | 2+ | Full Disk | Applicable<br>Not | 2 km | 1.0 km | 0-100 mm/hr | 5 mm/hr | 15 min | 5 min | 266 sec<br>Full Disk: | 266 sec<br>Full Disk: | 200% for rain | here<br>Atmosp | ion<br>Precipitat | | Potential Total Water Content | 3 | O2 | McIDAS NetCDF McIDAS | 6 | N<br>O | 2+ | CONUS: Clear<br>and Above<br>Cloud Regions<br>Only) & Full<br>Disk: Clear<br>and Above<br>Cloud Regions<br>Only &<br>Mesoscale:<br>Clear and<br>Above Cloud<br>Regions Only | Applicable<br>SFC - TOA | CONUS: 10<br>km & Full<br>Disk: 10 km &<br>Mesoscale: 4<br>km | CONUS: 5<br>km & Full<br>Disk: 5 km<br>&<br>Mesoscale:<br>2 km | 0 - 100 mm | 10% compared to ground based truth | CONUS: 60<br>min & Full<br>Disk: 60 min<br>&<br>Mesoscale:<br>5 min | CONUS:<br>5 min &<br>Full Disk:<br>5 min | 266 sec<br>CONUS:<br>159 sec &<br>Full Disk:<br>159 sec &<br>Mesoscale:<br>266 sec | 266 sec<br>CONUS:<br>159 sec<br>&<br>Full Disk:<br>159 sec | rate > 0<br>3 mm | Atmosp<br>here | ion<br>Profiles | | Absorbed<br>Shortwave<br>Radiation:<br>Surface | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Mesoscale | Not<br>Applicable | 5 km | 1.0 km | 0 - 1200 W/m2 | Low albedo:<br>60 W/m2 &<br>High albedo:<br>25 W/m2 | 60 min | N/A | Mesoscale:<br>3236 sec | N/A | Low Albedo:<br>40 W/m2 &<br>High Albedo:<br>10 W/m2 | Atmosp<br>here | Radiation | | Downward<br>Longwave<br>Radiation:<br>Surface | 3 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS & Full<br>Disk | Not<br>Applicable | CONUS: 25<br>km & Full<br>Disk: 100 km | CONUS: 5<br>km-Full<br>Disk: 4 km | 50 - 750 W/m2 | 25 W/m2 for<br>known cloud<br>fraction | 60 min | 5 min | CONUS:<br>3238 sec &<br>Full Disk:<br>806 sec | CONUS:<br>3238 sec<br>& Full<br>Disk: 806<br>sec | 20 W/m2 for<br>known cloud<br>fraction | Atmosp<br>here | Radiation | | Upward<br>Longwave<br>Radiation:<br>Surface | 3 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS & Full<br>Disk | Not<br>Applicable | CONUS: 25<br>km-Full Disk:<br>100 km | CONUS: 5<br>km-Full<br>Disk: 5 km | 50-900 W/m2 | 10 W/m2 | 60 min | 5 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec | CONUS:<br>3236 sec<br>&<br>Full Disk:<br>3236 sec | 20 W/m2 | Atmosp<br>here | Radiation | | Upward<br>Longwave<br>Radiation: TOA | 3 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS & Full<br>Disk | Not<br>Applicable | 25 km | 5 km | CONUS: 50-450<br>W/m2 & Full<br>Disk: 50-900<br>W/m2 | 20 W/m2 | 60 min | 5 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec | CONUS:<br>3236 sec<br>&<br>Full Disk:<br>3236 sec | 5 W/m2 | Atmosp<br>here | Radiation | | | | | | | | | | Appendix | A Table 3: Op | otion 2 End-P | roduct Sets and | Performance P | arameters | | | | | | | |-------------------------------|--------------------|------------------------------------------------|------------------------------------|------------------------|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|----------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate / Coverage<br>Time Option (Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated Ground<br>Latency (O2) Mode 3 | Vendor Allocated Ground<br>Latency (O2) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Ozone Total | 3 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS & Full<br>Disk | Total Column | 10 km | 5 km | 100-650 DU<br>(where 1 DU=-<br>2.7 e16<br>mol/cm2) | 8% | 60 min | 5 min | CONUS:<br>266 sec &<br>Full Disk:<br>266 sec | CONUS:<br>266 sec<br>&<br>Full Disk:<br>266 sec | 5% | Atmosp<br>here | Trace<br>Gases | | SO2 Detection | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Total Column | 5 km | 1 km | Binary Yes/No<br>Above 1 to 700<br>Dobson Units<br>(DU) | 10% | 60 min | 5 min | Full Disk :<br>806 sec | Full Disk:<br>806 sec | 5% | Atmosp<br>here | Trace<br>Gases | | Flood/Standing<br>Water | 4 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | Full Disk &<br>Mesoscale | Not<br>Applicable | 10 km | 5 km | 0 to 100% | Probability of correct classification to 60% | 60 min | Full Disk:<br>60 min | Full Disk<br>19436 sec<br>&<br>Mesoscale:<br>19436 sec | Full Disk:<br>19436<br>sec | 30% | Land | Land | | Ice Cover/<br>Landlocked | 4 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Not<br>Applicable | 2 km | 1 km | Binary yes / no detection | Binary yes/no detection | 24 hour | 24 hour | Full Disk:<br>77756 sec | Full Disk:<br>77756<br>sec | 5% | Land | Land | | Snow Depth | 4 | O2 | NetCDF<br>McIDAS | 6 | N<br>o | 2+ | CONUS: Tall<br>Grassy Plains<br>Only & Full<br>Disk: Tall<br>Grassy Plains<br>Only &<br>Mesoscale:<br>Tall Grassy<br>Plains Only | Not<br>Applicable | 2 km | 1 km | 0 to 27 cm | 30% | CONUS: 60<br>min & Full<br>Disk: 60 min<br>&<br>Mesoscale:<br>60 min | CONUS:<br>60 min &<br>Full Disk:<br>60 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec &<br>Mesoscale:<br>3236 sec | CONUS:<br>3236 sec<br>&<br>Full Disk:<br>3236 sec | 5% | Land | Land | | Surface Albedo | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Not<br>Applicable | 2 km | 2 km | 0 to 1 Albedo<br>Units | 0.08 (albedo<br>units) | 60 min | 60 min | Full Disk:<br>3236 sec | Full Disk:<br>3236 sec | 3% | Land | Land | | Surface<br>Emissivity | 3 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | CONUS | Not<br>Applicable | 10 km | 5 km | 0.85 to 1.0 (unitless) | 0.02 | 60 min | 60 min | CONUS:<br>3236 sec | CONUS:<br>3236 sec | 0.005 | Land | Land | | Vegetation<br>Fraction: Green | 4 | 02 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | CONUS | Not<br>Applicable | 2 km | 1 km | 0.0 to 1.0 (unitless) | 0.05 | 60 min | 60 min | CONUS:<br>3236 sec | CONUS:<br>3236 sec | 0.05 | Land | Land | | Vegetation<br>Index | 4 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | CONUS | Not<br>Applicable | 2 km | 1 km | 0 to 1 (NDVI units) | 0.04 NDVI<br>Units | 60 min | 60 min | CONUS:<br>3236 sec | CONUS:<br>3236 sec | 0.04 NDVI<br>units | Land | Land | | | | | | | | | | Appendix | A Table 3: Op | tion 2 End-P | roduct Sets and I | Performance Pa | arameters | | | | | | | |----------------------------------|--------------------|------------------------------------------------|------------------------------------|------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space<br>Weather) | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate / Coverage<br>Time Option (Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated Ground<br>Latency (O2) Mode 3 | Vendor Allocated Ground<br>Latency (O2) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Currents | 4 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | Full Disk &<br>Mesoscale | SFC | 2 km | 1.0 km | 0 to 2 m/s (0 to<br>7.2 km/hr), 0 to<br>360 degrees | 1 km/hr | 6 hr | 6 hr | Full Disk:<br>3236 sec &<br>Mesoscale:<br>3236 sec | Full Disk:<br>3236 sec | 1 km/hr | Ocean | Ocean | | Currents:<br>Offshore | 4 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS and<br>US navigable<br>waters thru<br>EEZ & Full<br>Disk | SFC | 2 km | 1 km | 0 - 7.2 km/hr | 1 km / hr | 180 min | 180 min | CONUS:<br>3236 sec<br>& Full Disk:<br>3236 sec | CONUS:<br>3236 sec<br>&<br>Full Disk:<br>3236 sec | 1 km/hr | Ocean | Ocean | | Sea & Lake Ice:<br>Age | 4 | O2 | NetCDF<br>McIDAS | 2 | N<br>0 | 2+ | Full Disk | Ice Surface | 1 km | 3 km | Distinguish between ice free areas and first year ice. | 85%<br>probability of<br>correct<br>detection | 6 hr | 6 hr | Full Disk:<br>3236 sec | Full Disk:<br>3236 sec | 15% | Ocean | Ocean | | Sea & Lake Ice:<br>Concentration | 4 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS: Regional & Great Lakes and US coastal waters containing sea ice hazards to navigation & Full Disk: Sea ice covered waters in N. & S. Hemisphere | Ice Surface | CONUS: 3 km<br>& Full Disk: 10<br>km | CONUS: <<br>= 1.5 km, -<br>Full Disk: <<br>= 5.0 km | Ice<br>concentration -<br>0/10 to 10/10 | Ice<br>concentration -<br>10% | CONUS:<br>180 min &<br>Full Disk: 6<br>hr | CONUS:<br>180 min<br>& Full<br>Disk: 6<br>hr | CONUS:<br>3236 sec &<br>Full Disk:<br>9716 sec | CONUS:<br>3236 sec<br>&<br>Full Disk:<br>9716 sec | 30% | Ocean | Ocean | | Sea & Lake Ice:<br>Extent | 4 | O2 | NetCDF<br>McIDAS | 2 | N<br>o | 2+ | Full Disk | Not<br>Applicable | 2 km | 1 km | From the 100% ice concentration location at the land edge to the less than 15% ice concentration that is the ice extent | Ice extent:<br>1km | 180 min | 180 min | Full Disk:<br>9716 sec | Full Disk:<br>9716 sec | 50% | Ocean | Ocean | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 G417-R-FPS-0089 Version 1.10 | | | | | | | | | Appendix | A Table 3: Op | tion 2 End-P | roduct Sets and l | Performance P | arameters | | | | | | | |---------------------------|--------------------|------------------------------------------------|------------------------------------|------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical Resolution (Product Horizontal / Angular Resolution for Space Weather) | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate / Coverage<br>Time Option (Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated Ground<br>Latency (O2) Mode 3 | Vendor Allocated Ground<br>Latency (O2) Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Sea & Lake Ice:<br>Motion | 4 | O2 | NetCDF<br>McIDAS | 4 | N<br>o | 2+ | CONUS: Great Lakes and Chesapeake and Delaware Bays only & Full Disk: Sea ice covered waters in N. & S. Hemisphere | Not<br>Applicable | CONUS: 5 km<br>& Full Disk: 15<br>km | CONUS: <<br>= 2.5 km-<br>Full Disk: <<br>= 7.5 km | Direction: 0 to<br>360° &<br>Displacement: 0<br>to 0.6 m/s | Direction: +/-<br>22.5° | CONUS: 3<br>hr & Full<br>Disk: 6 hr | CONUS:<br>3 hr &<br>Full Disk:<br>6 hr | CONUS:<br>3236 sec &<br>Full Disk:<br>9716 sec | CONUS:<br>3236 sec<br>&<br>Full Disk:<br>9716 sec | 50% | Ocean | Ocean | Appendix B: OSD-Allocated Ground Latency for GOES-R Access Subsystem | | und Latency for GOES-R Access Subsystem | |----------------------------------------------|-----------------------------------------| | Name | GAS Allocated Ground Latency | | Aerosol Detection (including Smoke and Dust) | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Aerosol Particle Size | Full Disk: 1 sec | | Suspended Matter / Optical Depth | CONUS: 1 sec | | | Full Disk: 1 sec | | Volcanic Ash: Detection and Height | Full Disk: 1 sec | | Aircraft Icing Threat | Full Disk: 1 sec | | Cloud Ice Water Path | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud Imagery: Coastal | Coastal: 1 sec | | Cloud Layers / Heights and Thickness | CONUS: 1 sec | | • | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud Liquid Water | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud & Moisture Imagery | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud Optical Depth | CONUS: 1 sec | | | Full Disk: 1 sec | | Cloud Particle Size Distribution | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud Top Phase | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud Top Height | CONUS: 1 sec, | | · • | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Appendix B: OSD-Allocated Ground Late | ency for GOES-R Access Subsystem | |--------------------------------------------------------------------|----------------------------------| | Name | GAS Allocated Ground Latency | | Cloud Top Pressure | CONUS: 1 sec, | | | Full Disk: 1 sec | | Cloud Top Temperature | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Cloud Type | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Convective Initiation | CONUS: 1 sec | | | Mesoscale: 1 sec | | Enhanced "V" / Overshooting Top Detection | CONUS: 1 sec | | - ' | Mesoscale: 1 sec | | Hurricane Intensity | Full Disk: 1 sec | | Lightning Detection: 1) Events and 2)Flashes | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Low Cloud and Fog | Full Disk: 1 sec | | Turbulence | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Visibility | Full Disk: 1 sec | | Probability of Rainfall | Full Disk: 1 sec | | Rainfall Potential | Full Disk: 1 sec | | Rainfall Rate/QPE | Full Disk: 1 sec | | Legacy Vertical Moisture Profile | CONUS: 1 sec | | <b>,</b> | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Legacy Vertical Temperature Profile | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Derived Stability Indices (5 indices: CAPE, Lifted Index, K-index, | CONUS: 1 sec | | Showalter Index, Total Totals) | Mesoscale: 1 sec | | Total Precipitable Water | CONUS: 1 sec | | · | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Total Water Content | CONUS: 1 sec | | | Full Disk: 1 sec | | | Mesoscale: 1 sec | | Appendix B: OSD-Allocated Ground Latency for GOES-R Access Subsystem | | | |----------------------------------------------------------------------|------------------------------|--| | Name | GAS Allocated Ground Latency | | | Clear Sky Masks | CONUS: 1 sec | | | • | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Radiances | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Absorbed Shortwave Radiation: Surface | Mesoscale: 1 sec | | | Downward Longwave Radiation: Surface | CONUS: 1 sec | | | · · | Full Disk: 1 sec | | | Downward Solar Insolation: Surface | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Reflected Solar Insolation: TOA | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Upward Longwave Radiation: Surface | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Upward Longwave Radiation: TOA | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Ozone Total | CONUS: 1 sec | | | | Full Disk: 1 sec | | | SO2 Detection | Full Disk: 1 sec | | | Derived Motion Winds | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Fire / Hot Spot Characterization: | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Flood/Standing Water | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Ice Cover/ Landlocked | Full Disk: 1 sec | | | Land Surface (Skin) Temperature | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Snow Cover | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Appendix B: OSD-Allocated Ground Latency for GOES-R Access Subsystem | | | |----------------------------------------------------------------------|------------------------------|--| | Name | GAS Allocated Ground Latency | | | Snow Depth | CONUS: 1 sec | | | · | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Surface Albedo | Full Disk: 1 sec | | | Surface Emissivity | CONUS: 1 sec | | | Vegetation Fraction: Green | CONUS: 1 sec | | | Vegetation Index | CONUS: 1 sec | | | Currents | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Currents: Offshore | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Sea & Lake Ice: Age | Full Disk: 1 sec | | | Sea & Lake Ice: Concentration | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Sea & Lake Ice: Extent | Full Disk: 1 sec | | | Sea & Lake Ice: Motion | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Sea Surface Temps | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Energetic Heavy Ions | N/A | | | Magnetospheric Electrons and Protons: Low Energy | N/A | | | Magnetospheric Electrons and Protons: Medium & High Energy | N/A | | | Solar and Galactic Protons | N/A | | | Geomagnetic Field | N/A | | | Solar Flux: EUV | N/A | | | Solar Flux: X-Ray | N/A | | | Solar Imagery: X-Ray | N/A | | **Appendix C: OSD Allocated Ground Latency for Antennas** | | located Ground Latency for Antennas | | |----------------------------------------------|-------------------------------------|--| | Name | Antenna Ground Latency | | | Aerosol Detection (including Smoke and Dust) | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Aerosol Particle Size | Full Disk: 1 sec | | | Suspended Matter / Optical Depth | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Volcanic Ash: Detection and Height | Full Disk: 1 sec | | | Aircraft Icing Threat | Full Disk: 1 sec | | | Cloud Ice Water Path | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Cloud Imagery: Coastal | Coastal: 1 sec | | | Cloud Layers / Heights and Thickness | CONUS: 1 sec | | | | Full Disk: 1 sec; | | | | Mesoscale: 1 sec | | | Cloud Liquid Water | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Cloud & Moisture Imagery | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Cloud Optical Depth | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Cloud Particle Size Distribution | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Cloud Top Phase | CONUS: 1 sec | | | · | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Cloud Top Height | CONUS: 1 sec, | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Cloud Top Pressure | CONUS: 1 sec, | | | • | Full Disk: 1 sec | | | Appendix C: OSD Allocated Ground Latency for Antennas | | | |--------------------------------------------------------------------|------------------------|--| | Name | Antenna Ground Latency | | | Cloud Top Temperature | Full Disk: 1 sec | | | 1 1 2 200 2 | Mesoscale: 1 sec | | | Cloud Type | CONUS: 1 sec | | | • | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Convective Initiation | CONUS: 1 sec | | | | Mesoscale: 1 sec | | | Enhanced "V" / Overshooting Top Detection | CONUS: 1 sec | | | | Mesoscale: 1 sec | | | Hurricane Intensity | Full Disk: 1 sec | | | Lightning Detection: 1) Events and 2)Flashes | CONUS: 1 sec | | | , | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Low Cloud and Fog | Full Disk: 1 sec | | | Turbulence | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Visibility | Full Disk: 1 sec | | | Probability of Rainfall | Full Disk: 1 sec | | | Rainfall Potential | Full Disk: 1 sec | | | Rainfall Rate/QPE | Full Disk: 1 sec | | | Legacy Vertical Moisture Profile | CONUS: 1 sec | | | • , | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Legacy Vertical Temperature Profile | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Derived Stability Indices (5 indices: CAPE, Lifted Index, K-index, | CONUS: 1 sec | | | Showalter Index, Total Totals) | Mesoscale: 1 sec | | | Total Precipitable Water | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Total Water Content | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Appendix C: OSD Allocated Ground Latency for Antennas | | | |-------------------------------------------------------|------------------------|--| | Name | Antenna Ground Latency | | | Clear Sky Masks | CONUS: 1 sec | | | · | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Radiances | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Absorbed Shortwave Radiation: Surface | Mesoscale: 1 sec | | | Downward Longwave Radiation: Surface | CONUS: 1 sec | | | • | Full Disk: 1 sec | | | Downward Solar Insolation: Surface | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Reflected Solar Insolation: TOA | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Upward Longwave Radiation: Surface | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Upward Longwave Radiation: TOA | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Ozone Total | CONUS: 1 sec | | | | Full Disk: 1 sec | | | SO2 Detection | Full Disk: 1 sec | | | Derived Motion Winds | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Fire / Hot Spot Characterization: | CONUS: 1 sec | | | · | Full Disk: 1 sec | | | Flood/Standing Water | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Ice Cover/ Landlocked | Full Disk: 1 sec | | | Land Surface (Skin) Temperature | CONUS: 1 sec | | | , , | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Snow Cover | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Appendix C: OSD Allocated Ground Latency for Antennas | | | |------------------------------------------------------------|------------------------|--| | Name | Antenna Ground Latency | | | Snow Depth | CONUS: 1 sec | | | · | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Surface Albedo | Full Disk: 1 sec | | | Surface Emissivity | CONUS: 1 sec | | | Vegetation Fraction: Green | CONUS: 1 sec | | | Vegetation Index | CONUS: 1 sec | | | Currents | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Currents: Offshore | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Sea & Lake Ice: Age | Full Disk: 1 sec | | | Sea & Lake Ice: Concentration | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Sea & Lake Ice: Extent | 1 sec | | | Sea & Lake Ice: Motion | CONUS: 1 sec | | | | Full Disk: 1 sec | | | Sea Surface Temps | CONUS: 1 sec | | | | Full Disk: 1 sec | | | | Mesoscale: 1 sec | | | Energetic Heavy Ions | 1 sec | | | Magnetospheric Electrons and Protons: Low Energy | 1 sec | | | Magnetospheric Electrons and Protons: Medium & High Energy | 1 sec | | | Solar and Galactic Protons | 1 sec | | | Geomagnetic Field | 1 sec | | | Solar Flux: EUV | 1 sec | | | Solar Flux: X-Ray | 1 sec | | | Solar Imagery: X-Ray | 1 sec | | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 ## Appendix D: Improved Latencies and Refresh Rates for Product Sets 1 and 2 (Option 1) | | | | | | | | A | Appendix D | : Improved I | Latencies an | d Refresh Rate | es for Product | Sets 1 and 2 | (Option 1) | | | | | | |----------------------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical Resolution (Product Horizontal / Angular Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | leas | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (01)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Aerosol<br>Detection<br>(including<br>Smoke and<br>Dust) | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Total<br>Column | 2 km | 1 km | Binary yes/no<br>detection<br>above<br>threshold 0.2<br>(for aerosol<br>optical<br>thickness) | 20%<br>classification<br>error | 15 min | 5 min | CONUS:<br>806 sec<br>Full Disk:<br>159 sec<br>Mesoscale:<br>806 sec | CONUS:<br>806 sec<br>Full<br>Disk:<br>159 sec | 10% | Atmosphere | Aerosols | | Suspended<br>Matter /<br>Optical Depth | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS &<br>Full Disk | Total<br>Column | 2 km | 1.0 km | 0.04-3.0 in<br>optical depth<br>(retain<br>negative<br>retrievals) | 20% classification error over land, 10% classification error over ocean; 30% error in optical depth | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>50 sec<br>Full Disk:<br>159 sec | CONUS:<br>50 sec<br>Full<br>Disk:<br>159 sec | 13% | Atmosphere | Aerosols | | Volcanic Ash:<br>Detection and<br>Height | 2 | В | NetCDF<br>McIDAS | 2 | No | 2+ | Full Disk | 3 km (top<br>height) | 2 km | 1.0 km | 0-50 tons/km2 | 2 ton/km2 | 15 min | 5 min | Full Disk:<br>50 sec | Full<br>Disk: 50<br>sec | 10% | Atmosphere | Aerosols | | Cloud &<br>Moisture<br>Imagery | 1 | В | NetCDF<br>McIDAS | 54 | Ye<br>s | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | 2 km, with<br>finer<br>daytime<br>obser-<br>vations | 1.0 km | Not Applicable | Not<br>Applicable | CONUS: 5<br>min & Full<br>Disk: 15<br>min &<br>Mesoscale:<br>30 sec | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>50 sec<br>Full Disk:<br>50 sec<br>Mesoscale:<br>23 sec | CONUS:<br>50 sec<br>Full<br>Disk: 50<br>sec | N/A | Atmosphere | Clouds | | Cloud Optical<br>Depth | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS:<br>for optical<br>depth > 1<br>& Full Disk:<br>for optical<br>depth > 1 | Total<br>column | CONUS: 2<br>km &<br>Full Disk: 4<br>km | CONUS: 1<br>km-Full<br>Disk: 2 km | 0.5 - 50 | 20% | CONUS:<br>15 min &<br>Full Disk:<br>15 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>806 sec<br>Full Disk:<br>159 sec | CONUS:<br>806 sec<br>Full<br>Disk:<br>159 sec | 10% | Atmosphere | Clouds | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 | | | | | | | | A | Appendix D | : Improved | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |----------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Cloud Particle<br>Size<br>Distribution | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Cloud Top | 2 km | 1.0 km | 0 - 50 μm | 4 µm for<br>liquid phase,<br>10 µm for ice<br>phase | CONUS: 5<br>min, & Full<br>Disk: 15<br>min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min, & Full<br>Disk: 5 min | CONUS:<br>50 sec<br>Full Disk:<br>806 sec<br>Mesoscale:<br>266 sec | CONUS:<br>50 sec<br>Full<br>Disk:<br>266 sec | 2 um | Atmosphere | Clouds | | Cloud Top<br>Phase | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Cloud Top | 2 km | 1.0 km | Liquid /solid /<br>supercooled /<br>mixed | 20%<br>classification<br>error | CONUS: 5<br>min & Full<br>Disk: 15<br>min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>50 sec<br>Full Disk:<br>159 sec<br>Mesoscale:<br>50 sec | CONUS:<br>50 sec<br>Full<br>Disk:<br>159 sec | 20% | Atmosphere | Clouds | | Cloud Top<br>Height | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Cloud top | CONUS:<br>10 km &<br>Full Disk:<br>10 km &<br>Mesoscale:<br>4 km | CONUS: 5<br>km-Full<br>Disk: 5 km-<br>Mesoscale:<br>2 km | CONUS: 100m<br>- 300hPa &<br>Full Disk: 0 -<br>15 km &<br>Mesoscale: 0 -<br>20 km | 500 m for<br>low level<br>clouds with<br>emissivity ><br>0.5 | CONUS:<br>60 min, &<br>Full Disk:<br>60 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min, & Full<br>Disk: 5 min | CONUS:<br>159 sec,<br>Full Disk:<br>159 sec<br>Mesoscale:<br>266 sec | CONUS:<br>159 sec,<br>Full<br>Disk:<br>159 sec | 1.3 km | Atmosphere | Clouds | | Cloud Top<br>Pressure | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS &<br>Full Disk | Cloud top | 10 km | 5 km | CONUS: 100-<br>1000 hPa<br>Full Disk: 100 -<br>1000 mb | 100 mb for<br>low level<br>clouds with<br>emissivity ><br>0.5 | 60 min | 5 min | CONUS:<br>536 sec,<br>Full Disk:<br>159 sec | CONUS:<br>536 sec,<br>Full<br>Disk:<br>159 sec | 10 mb | Atmosphere | Clouds | | Cloud Top<br>Temperature | 1 | В | NetCDF<br>McIDAS | 4 | No | 2+ | Full Disk &<br>Mesoscale | At Cloud<br>Tops | 2 km | 1.0 km | 180-300 K | 1.0 K for known emissivity = 1.0 and known atmosphere and low clouds; 4 K for low level cloud emissivity > 0.5 | Full Disk:<br>15 min &<br>Mesoscale:<br>5 min | Full Disk: 5<br>min | Full Disk:<br>159 sec<br>Mesoscale:<br>266 sec | Full<br>Disk:<br>159 sec | 1 K | Atmosphere | Clouds | Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 G417-R-FPS-0089 Version 1.10 | | | | | | | | A | Appendix D | : Improved I | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |-------------------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical Resolution (Product Horizontal / Angular Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Hurricane<br>Intensity | 2 | В | NetCDF<br>McIDAS | 2 | No | 2+ | Full Disk | Not<br>Applicable | 2 km | 1.0 km | Dvorak<br>hurricane<br>intensity scale<br>values of 4 - 8<br>or leading to<br>wind speeds of<br>33.4 m/s (65<br>knots) to 87.5<br>m/s (170<br>knots) | 5 m/s over<br>ocean | 30 min | 5 min | Full Disk:<br>159 sec | Full<br>Disk:<br>159 sec | 5 m/s over<br>the ocean | Atmosphere | Clouds | | Lightning<br>Detection: 1)<br>Events and<br>2)Flashes | 1 | В | NetCDF<br>McIDAS | 12 | Ye<br>s | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Surface to cloud top | 10 km | 5 km | Real time | 70% total<br>strikes<br>detection | continuous | continuous | CONUS:<br>50 sec<br>Full Disk:<br>50 sec<br>Mesoscale:<br>50 sec | CONUS:<br>50 sec<br>Full<br>Disk: 50<br>sec | 5% | Atmosphere | Clouds | | Rainfall<br>Rate/QPE | 2 | В | NetCDF<br>McIDAS | 2 | No | 2+ | Full Disk | Not<br>Applicable | 2 km | 1.0 km | 0-100 mm/hr | 2 mm/hr at<br>30 mm/hr<br>rate, with<br>higher<br>values at<br>higher rates | 15 min | 5 min | Full Disk:<br>50 sec | Full<br>Disk: 50<br>sec | 2 mm/hr at<br>30 mm/hr<br>rate, with<br>higher<br>values at<br>higher rates | Atmosphere | Precipitation | G417-R-FPS-0089 Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 Responsible Organization: GOES-R/Code 417 Amountin D. Immunol I. et ancies and Refresh Retay for Product Sets 1 and 2 (Ontion 1) | | | | | | | | A | Appendix D | : Improved | Latencies ar | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |----------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Legacy<br>Vertical<br>Moisture<br>Profile | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS - Clear and Above Cloud Regions only & Full Disk - Clear and Above Cloud Regions only & Mesoscale - Clear and Above Cloud Regions only & Regions | Reflects<br>layering<br>of<br>Numerical<br>Weather<br>Prediction<br>Models;<br>inherent<br>vertical<br>resolution<br>is only 3<br>to 5 km | 10 km | 5 km | 0 - 100% | Sfc-500 mb:<br>18 % relative<br>humidity &<br>500-300 mb:<br>18% relative<br>humidity &<br>300-100 mb:<br>20% relative<br>humidity | Full Disk :<br>60 min &<br>CONUS:<br>30 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>266 sec &<br>Full Disk:<br>266 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>266 sec | Sfc-500 mb:<br>18 % relative<br>humidity<br>500-300 mb:<br>18% relative<br>humidity<br>300-100 mb:<br>20% relative<br>humidity | Atmosphere | Profiles | | Legacy<br>Vertical<br>Temperature<br>Profile | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS - Clear and Above Cloud Regions only & Full Disk - Clear and Above Cloud Regions only & Mesoscale - Clear and Above Cloud Regions only & Regions | Reflects<br>layering<br>of<br>Numerical<br>Weather<br>Predic-<br>tion<br>Models;<br>inherent<br>vertical<br>resolution<br>is only 3<br>to 5 km | 10 km | 5 km | 180 - 320 K | 0.1 K<br>improvement<br>over<br>numerical<br>weather<br>prediction<br>model<br>analysis | Full Disk :<br>60 min &<br>CONUS:<br>30 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>266 sec &<br>Full Disk:<br>266 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>266 sec | 0.1 K<br>improvement<br>over<br>numerical<br>weather<br>prediction<br>model<br>analysis | Atmosphere | Profiles | G417-R-FPS-0089 | | | | | | | | A | ppendix D | : Improved 1 | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |-------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical Resolution (Product Horizontal / Angular Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (01)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Derived<br>Stability<br>Indices (5<br>indices:<br>CAPE, Lifted<br>Index, K-<br>index,<br>Showalter<br>Index, Total<br>Totals) | 2 | В | NetCDF<br>McIDAS | 30 | No | 2+ | CONUS &<br>Mesoscale | Not<br>Applicable | CONUS: 4<br>km &<br>Mesoscale:<br>4 km | 2 km | Lifted Index: 10 to 40 K & CAPE: 0 to 5000 J/kg & Showalter index: >4 to - 10 K & Total totals Index: - 43 to > 56 & K index: 0 to 40 | Lifted Index:<br>+/- 2.0 K &<br>CAPE: 1000<br>J/ kg &<br>Showalter<br>index: +/- 2<br>K &<br>Total totals<br>Index: +/- 1<br>&<br>K index: +/- 2 | CONUS:<br>30 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min | CONUS:<br>159 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>159 sec | Lifted Index:<br>+/- 6.5 K &<br>CAPE: 2500<br>J/ kg &<br>Showalter<br>index: +/-<br>6.5 K &<br>Total totals<br>Index: +/-4 K<br>&<br>K index: +/-<br>5 K | Atmosphere | Profiles | | Total<br>Precipitable<br>Water | 1 | В | NetCDF<br>McIDAS | 6 | | 2+ | CONUS: Clear and Above Cloud Regions Only & Full Disk: Clear and Above Cloud Regions Only & Mesoscale: Clear and Above Cloud Regions Only Clear and Above Cloud Regions Only | Not<br>Applicable | 10 km | 2 km | 0 - 100 mm | 10%<br>compared to<br>ground<br>based truth | CONUS:<br>30 min &<br>Full Disk:<br>60 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS:<br>266 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>806 sec | 3 mm | Atmosphere | Profiles | | Clear Sky<br>Masks | 1 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | 2 km | 1 km | 0 - 1 Binary | 13%<br>probability of<br>incorrect<br>detection | CONUS:<br>15 min &<br>Full Disk:<br>15 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>266 sec<br>Full Disk:<br>806 sec<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>Full<br>Disk:<br>806 sec | 10% | Atmosphere | Radiances | | | | | | | | A | Appendix D | : Improved | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |---------------------------------------------|--------------------|------------------------------------------------|------------------------------------|-------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products<br>RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Radiances | 1 | В | NetCDF<br>McIDAS | 6 Yes | 1b | CONUS: Clear and Cloud Regions only & Full Disk: Clear and Cloud Regions only & Mesoscale: Clear and Cloud Regions only | Not<br>Applicable | Individual<br>channel<br>resolutions<br>(0.5 km,<br>1.0 km,<br>and 2.0<br>km) | One half of<br>individual<br>channel<br>resolutions<br>(0.5 km,<br>1.0 km,<br>and 2.0<br>km) | 180K-320K<br>when<br>converted to<br>brightness<br>temperature<br>units | 1.0 K when<br>converted to<br>in brightness<br>temperature<br>units for<br>known<br>emissivity | CONUS:<br>15 min &<br>Full Disk:<br>15 min &<br>Mesoscale:<br>5 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>266 sec &<br>Full Disk:<br>806 sec &<br>Mesoscale:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>806 sec | 0.4 K when<br>converted to<br>in brightness<br>temperature<br>units for<br>known<br>emissivity | Atmosphere | Radiances | | Downward<br>Solar<br>Insolation:<br>Surface | 2 | В | NetCDF<br>McIDAS | 6 No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | CONUS:<br>25 km &<br>Full Disk:<br>50 km &<br>Mesoscale:<br>5 km | CONUS: 2<br>km-Full<br>Disk: 4 km-<br>Mesoscale:<br>1 km | 0-1500 W/m2 | +/- 60 W/m2<br>at high end<br>of range for<br>known cloud<br>fraction<br>(1500 W/m2)<br>& +/- 40<br>W/m2 at<br>typical value/<br>mid-point for<br>known cloud<br>fraction ( 350<br>W/m2) | 60 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>3236 sec<br>Full Disk:<br>3236 sec<br>Mesoscale:<br>3236 sec | CONUS:<br>3236<br>sec<br>Full<br>Disk:<br>3236<br>sec | 30 W/m2 for<br>known cloud<br>fraction | Atmosphere | Radiation | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 G417-R-FPS-0089 Version 1.10 | | | | | | | | A | Appendix D | : Improved | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Reflected<br>Solar<br>Insolation:<br>TOA | 2 | В | NetCDF<br>McIDAS | 4 | No | 2+ | CONUS &<br>Full Disk | Not<br>Applicable | CONUS:<br>25 km &<br>Full Disk:<br>100 km | CONUS: 2<br>km-Full<br>Disk: 4 km | 0-1300 W/m2 | CONUS: +/- 60 W/m2 at high end of range (1300 W/m2) +/- 40 W/m2 at typical value/mid-point (350 W/m2) & Full Disk: +/- 60 W/m2 at high end of range (1500 W/m2) +/- 40 W/m2 at typical value/mid-point (350 W/m2) | 60 min | 5 min | CONUS:<br>3236 sec<br>Full Disk:<br>3236 sec | CONUS:<br>3236<br>sec<br>Full<br>Disk:<br>3236<br>sec | 15 W/m2 | Atmosphere | Radiation | | | | | | | | | A | ppendix D | : Improved l | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | KBO Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Derived<br>Motion Winds | 2 | В | NetCDF<br>McIDAS | | | 1 | CONUS & Full Disk & Mesoscale | Cloud<br>Motion<br>Vector<br>winds: At<br>cloud<br>tops;<br>Clear-Sky<br>Water<br>Vapor<br>winds:<br>200 mb | 10 km | 5 km | Speed: 0-300<br>kts (0 to 155<br>m/s) &<br>Direction: 0 to<br>360 degrees | Speed: 6<br>m/s &<br>Direction: <<br>20 degrees | CONUS: 15 min (based on 3 sequential images 5 minutes apart) & Full Disk: 60 min (based single set of 3 sequential images 5 minutes apart) & Mesoscale : 15 min (based on 3 sequential 5 minute images of the same area) | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>159 sec &<br>Full Disk:<br>159 sec &<br>Mesoscale:<br>159 sec | CONUS:<br>159 sec<br>& Full<br>Disk:<br>159 sec | 2 m/sec | Atmosphere | Winds | | Fire / Hot Spot<br>Characterizati<br>on: | 2 | В | NetCDF<br>McIDAS | 8 1 | lo : | | CONUS &<br>Full Disk | Not<br>Applicable | 2 km | 1.0 km | 275 to 400 K | 2.0 K within<br>dynamic<br>range | CONUS: 5<br>min & Full<br>Disk: 15<br>min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>266 sec &<br>Full Disk:<br>266 sec | CONUS:<br>266 sec<br>& Full<br>Disk:<br>266 sec | 2.0 K | Land | Land | G417-R-FPS-0089 | | | | | | | | A | appendix D | : Improved | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |---------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|------------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical Resolution (Product Horizontal / Angular Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Land Surface<br>(Skin)<br>Temperature | 2 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | CONUS: 2<br>km & Full<br>Disk: 10<br>km &<br>Mesoscale:<br>2 km | CONUS: 1<br>km-Full<br>Disk: 5 km-<br>Mesoscale:<br>1 km | CONUS: 233-<br>333 K<br>Full Disk: 230-<br>330 K<br>Mesoscale:<br>213-333 K | 2.5 K with known emissivity, known atmospheric correction, and 80% channel correlation; 5 K otherwise | 60 min | 60 min | CONUS:<br>3236 sec<br>Full Disk:<br>159 sec<br>Mesoscale:<br>159 sec | CONUS:<br>3236<br>sec<br>Full<br>Disk:<br>159 sec | 2.3 K | Land | Land | | Snow Cover | 2 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS &<br>Full Disk &<br>Mesoscale | Not<br>Applicable | 2 km | 1.0 km | Binary yes / no detection | 30% | 60 min | 60 min | CONUS:<br>3236 sec &<br>Full Disk:<br>3236 sec &<br>Mesoscale:<br>3226 sec | CONUS:<br>3236<br>sec &<br>Full<br>Disk:<br>3236<br>sec | 5% | Land | Land | | Sea Surface<br>Temps | 2 | В | NetCDF<br>McIDAS | 6 | No | 2+ | CONUS<br>and US<br>navigable<br>waters thru<br>EEZ & Full<br>Disk &<br>Mesoscale | Not<br>Applicable | 2 km | 1.0 km | CONUS: 270<br>to 313 K<br>Full Disk: 271-<br>313 K<br>Mesoscale:<br>270-313 K | 2.1 K with<br>known<br>emissivity,<br>known<br>atmospheric<br>correction,<br>and 80%<br>channel<br>correlation;<br>3.1 K<br>otherwise | CONUS:<br>60 min &<br>Full Disk:<br>60 min &<br>Mesoscale:<br>60 min | CONUS: 5<br>min & Full<br>Disk: 5 min | CONUS:<br>806 sec<br>Full Disk:<br>806 sec<br>Mesoscale:<br>806 sec | CONUS:<br>806 sec<br>Full<br>Disk:<br>806 sec | 1.0 K | Ocean | Ocean | | Energetic<br>Heavy Ions | 1 | В | NetCDF | 1 | Ye<br>s | 1b | 1 direction | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | 10 to 200<br>MeV/n-4 mass<br>groups: He,<br>(C,N,O), Ne-S,<br>& Fe | 25% | 5 min | 5 min | 267 sec | 267 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | | | | | | | | A | ppendix D | : Improved | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |-------------------------------------------------------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|----------------------------------------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|------------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical<br>Resolution (Product<br>Horizontal / Angular<br>Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping Accuracy (Product Pointing Knowledge / Mapping Uncertainty for Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Magnetospheri<br>c Electrons<br>and Protons:<br>Low Energy | 1 | В | NetCDF | 1 | Ye<br>s | 1b | 5<br>directions | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | Electron and<br>Protons: 30 eV<br>to 30 keV | 25% | 30 sec | 30 sec | 51 sec | 51 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Magnetospheri<br>c Electrons<br>and Protons:<br>Medium &<br>High Energy | 1 | В | NetCDF | 1 | Ye<br>s | 1b | 5<br>directions | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | Electrons: 30<br>keV to 4 MeV<br>Protons: 30<br>keV to 1 MeV | 25% | 30 sec | 30 sec | 51 sec | 51 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Solar and<br>Galactic<br>Protons | 1 | В | NetCDF | 1 | Ye<br>s | 1b | 2<br>directions | Not<br>Applicable | Not<br>Applicable | Not<br>Applicable | 1 MeV to 500<br>MeV &<br>Differential<br>Measurements | 25% | 1 min | 1 min | 51 sec | 51 sec | Flux values<br>associated<br>with 10<br>counts<br>above<br>background<br>in 5-min<br>interval. | Space &<br>Solar | Energetic<br>Particles | | Geomagnetic<br>Field | 1 | В | NetCDF | 1 | Ye<br>s | 1b | 3-axis 0.5° | Not<br>Applicable | +/- 0.25° | +/- 10 | > = +/- 512<br>nT/axis (3-axis<br>vector) | 1.0 nT (per<br>axis) | 2 samples<br>per sec | 8 samples<br>per sec | 1.8 sec | 1.8 sec | 0.016 nT | Space &<br>Solar | Magnetic<br>Field | | Solar Flux:<br>EUV | 1 | В | NetCDF | 1 | Ye<br>s | 1b | Solar Disk<br>(40 arcmin) | Not<br>Applicable | Not<br>Applicable | +/-2 arcmin | 0.5x Sol Min ,<br>10x Sol Max | 20% | 30 sec | 30 sec | 24 sec | 24 sec | 2% | Space &<br>Solar | Solar | | Solar Flux: X-<br>Ray | 1 | В | NetCDF | 1 | Ye<br>s | 1b | Solar Disk<br>(40 arcmin) | Not<br>Applicable | Not<br>Applicable | +/-2 arcmin | XRSA: 5x10-9<br>to 5x10-4<br>W/m2 XRSB:<br>2x10-8 to<br>2x10-3 W/m2 | +/- 20% | 3 sec | 3 sec | 1.8 sec | 1.8 sec | 2% | Space &<br>Solar | Solar | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 Version 1.10 | | | | | | | | A | Appendix D | : Improved | Latencies an | d Refresh Rate | s for Product | Sets 1 and 2 | (Option 1) | | | | | | |-------------------------|--------------------|------------------------------------------------|------------------------------------|----------------------------|-------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------|------------------|------------------| | Name | Product Set Number | Product Baseline or<br>Product Option (1 or 2) | Output Format for each<br>Coverage | Number of End-<br>Products | RBU Product | Product Level | Product Geographic<br>Coverage (Product<br>Orthogonality/Coverage<br>for Space Weather) | Product Vertical Resolution (Product Horizontal / Angular Resolution for Space | Product Horizontal<br>Resolution (Product<br>Pointing/ Mapping<br>Accuracy for Space<br>Weather) | Product Mapping<br>Accuracy (Product<br>Pointing Knowledge /<br>Mapping Uncertainty for<br>Space Weather) | Product Measurement<br>Range | Product Measurement<br>Accuracy | Refresh Rate /<br>Coverage Time Option<br>(Mode 3) | Refresh Rate Option<br>(Mode 4) | Vendor Allocated<br>Ground Latency (O1)<br>Mode 3 | Vendor Allocated<br>Ground Latency (O1)<br>Mode 4 | Product Measurement<br>Precision | Product Type | Product Sub-type | | Solar Imagery:<br>X-Ray | 1 | В | NetCDF<br>FITS | 2 | Yes | 1b | 0.0-1.3<br>Solar Radii | 7.0 arcsec | Stability during 24 hours: 1.0 arcmin of sun center (N-S, E-W) (1 sigma)- 3.0 arcmin of sun center (N-S, E-W) (3 sigma) & Stability during 60 seconds: 2.0 arc seconds of sun center (E-W, N-S) (1 sigma)- 6.0 arcsec of sun center (E-W, N-S) (3 sigma) | +/-2.5<br>arcsec | Radiance: 0.3-<br>10^6<br>ph/cm2/arcsec/<br>sec &<br>Temperature:<br>1 to 10 MK | +/-40% in radiance | Image: <2<br>min &<br>Temp: < 6<br>min | Image: <2<br>min &<br>Temp: < 6<br>min | <50 sec | <50 sec | +/-40% in radiance | Space &<br>Solar | Solar | NOTE: There are 54 KPP Cloud and Moisture Imagery End-Products (48 single band End-Products in NETCDF format at the resolution native to each band and one multiband product at 2 km resolution in both NETCDF & McIDAS Area file formats). This number is arrived at as follows: Single band products: 16 products \* 1 format (NETCDF) \* 3 coverage areas (Full Disk, CONUS, Mesoscale) Multiband products: 1 product \* 2 formats (NETCDF and McIDAS Area)\* 3 coverage areas (Full Disk, CONUS, Mesoscale) (CCR01313, CCR01368) NOTE: The number of Derived Motion Winds End-Products is derived from 6 unique outputs multiplied by 3 coverage areas in two formats each. Check the VSDE at https://vsde.nasa.gov/vsde/portal to verify correct version prior to use. Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 ## **Appendix E: AWIPS Sectorized Product Set Characteristics** | | | | | Appendix E: AWIPS So | ectorized Produ | act Set Characteristics | | | | |--------------------------|---------------------------|-------------------------------------------|----------------------|----------------------------------------------------------------------|-----------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------| | Sectorized<br>Product ID | Satellite<br>Orbital Slot | Sector | Map Projection | Refresh (Full Disk:<br>Mode 3: 15 Min<br>Mode 4: 5 Min)<br>(minutes) | Resolution (km) | ABI Bands Used<br>(central wavelength,<br>micrometer) | Corner Points For Full Disk- Based on +/- E/W 70 degrees from station longitude For Alaska Region - Current Reference longitude at 150W | Bit Depth | Latency<br>(s) | | 1 | GOES EAST | East CONUS | Lambert<br>Conformal | 5 | 0.5 | 0.64 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 2 | GOES EAST | East CONUS | Lambert<br>Conformal | 5 | 1 | 0.47, 0.865, 1.61 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 3 | GOES EAST | East CONUS | Lambert<br>Conformal | 5 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 4 | GOES EAST | Mesoscale<br>(Flexible 1000 x<br>1000 km) | Lambert<br>Conformal | 0.5 | 0.5 | 0.64 | N/A | 8 (TBR) | 23.0 | | 5 | GOES EAST | Mesoscale<br>(Flexible 1000 x<br>1000 km) | Lambert<br>Conformal | 0.5 | 1 | 0.47, 0.865, 1.61 | N/A | 8 (TBR) | 23.0 | | 6 | GOES EAST | Mesoscale<br>(Flexible 1000 x<br>1000 km) | Lambert<br>Conformal | 0.5 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | N/A | 8 (TBR) | 23.0 | | 7 | GOES EAST | Full Disk | Mercator | 15 | 0.5 | 0.64 | Lower Left: 75S 145W Lower Right: 75S 5W Upper Right: 75N 5W Upper Left: 75N 145W | 8 (TBR) | 50.0 | | 8 | GOES EAST | Full Disk | Mercator | 15 | 1 | 0.47, 0.865, 1.61 | Lower Left: 75S 145W Lower Right: 75S 5W Upper Right: 75N 5W Upper Left: 75N 145W | 8 (TBR) | 50.0 | | 9 | GOES EAST | Full Disk | Mercator | 15 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | Lower Left: 75S 145W<br>Lower Right: 75S 5W<br>Upper Right: 75N 5W<br>Upper Left: 75N 145W | 8 (TBR) | 50.0 | | Sectorized | Satellite | Sector | Map Projection | Refresh (Full Disk: | Resolution | ABI Bands Used | Corner Points For Full Disk- Based on | Bit Depth | Latency | |------------|--------------|-------------------------------------------|------------------------|-----------------------------------------------|------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------|---------| | Product ID | Orbital Slot | | , | Mode 3: 15 Min<br>Mode 4: 5 Min)<br>(minutes) | (km) | (central wavelength, micrometer) | +/- E/W 70 degrees from station longitude For Alaska Region - Current Reference longitude at 150W | · | (s) | | 10 | GOES WEST | West CONUS | Lambert<br>Conformal | 5 | 0.5 | 0.64 | See ABI Performance and Operational Requirements Document, 417-ABIPORD-0017 | 8 (TBR) | 50.0 | | 11 | GOES WEST | West CONUS | Lambert<br>Conformal | 5 | 1 | 0.47, 0.865, 1.61 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 12 | GOES WEST | West CONUS | Lambert<br>Conformal | 5 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 13 | GOES WEST | Mesoscale<br>(Flexible 1000 x<br>1000 km) | Lambert<br>Conformal | 0.5 | 0.5 | 0.64 | N/A | 8 (TBR) | 23.0 | | 14 | GOES WEST | Mesoscale<br>(Flexible 1000 x<br>1000 km) | Lambert<br>Conformal | 0.5 | 1 | 0.47, 0.865, 1.61 | N/A | 8 (TBR) | 23.0 | | 15 | GOES WEST | Mesoscale<br>(Flexible 1000 x<br>1000 km) | Lambert<br>Conformal | 0.5 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | N/A | 8 (TBR) | 23.0 | | 16 | GOES WEST | Alaska Region<br>(N&W of<br>CONUS) | Polar<br>Stereographic | 15 | 0.5 | 0.64 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 17 | GOES WEST | Alaska Region<br>(N&W of<br>CONUS) | Polar<br>Stereographic | 15 | 1 | 0.47, 0.865, 1.61 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 18 | GOES WEST | Alaska Region<br>(N&W of<br>CONUS) | Polar<br>Stereographic | 15 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | See ABI Performance and Operational<br>Requirements Document, 417-<br>ABIPORD-0017 | 8 (TBR) | 50.0 | | 19 | GOES WEST | Full Disk | Mercator | 15 | 0.5 | 0.64 | Lower Left: 75S 153E<br>Lower Right: 75S 57W<br>Upper Right: 75N 57W<br>Upper Left: 75N 153E | 8 (TBR) | 50.0 | Effective Date: Date of Last Signature Responsible Organization: GOES-R/Code 417 G417-R-FPS-0089 Version 1.10 | Appendix E: AWIPS Sectorized Product Set Characteristics | | | | | | | | | | | | |----------------------------------------------------------|---------------------------|-----------|----------------|----------------------------------------------------------------------|-----------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--|--| | Sectorized<br>Product ID | Satellite<br>Orbital Slot | Sector | Map Projection | Refresh (Full Disk:<br>Mode 3: 15 Min<br>Mode 4: 5 Min)<br>(minutes) | Resolution (km) | ABI Bands Used (central wavelength, micrometer) | Corner Points For Full Disk- Based on +/- E/W 70 degrees from station longitude For Alaska Region - Current Reference longitude at 150W | Bit Depth | Latency (s) | | | | 20 | GOES WEST | Full Disk | Mercator | 15 | 1 | 0.47, 0.865, 1.61 | Lower Left: 75S 153E<br>Lower Right: 75S 57W<br>Upper Right: 75N 57W<br>Upper Left: 75N 153E | 8 (TBR) | 50.0 | | | | 21 | GOES WEST | Full Disk | Mercator | 15 | 2 | 1.378, 2.25, 3.90, 6.19, 6.95 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 | Lower Left: 75S 153E<br>Lower Right: 75S 57W<br>Upper Right: 75N 57W<br>Upper Left: 75N 153E | 8 (TBR) | 50.0 | | | Note: Sectorized Product Latencies are contained within the same Vendor-Allocated Ground Latency as Appendix A and D Cloud and Moisture Imagery latency.